Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения деформационные распространение

Отметим, что при построении различных моделей разрушения и формулировке критериев хрупкого разрушения во многих случаях исходят в общем из априорного постулирования преобладающего значения того или иного процесса. Так, например, в работах [149, 150] предполагалось, что критическое напряжение хрупкого разрушения 5с в поликристаллических материалах с различной структурой при разных температурно-деформационных условиях нагружения определяется только одним условием — переходом зародышевых микротрещин к гриффитсов-скому (нестабильному) росту. Условия распространения микротрещины как через границы зерен, так и через любые другие барьеры, возникающие при эволюции структуры в результате пластического течения, игнорировались. При этом сделана попытка объяснить увеличение S с ростом пластической деформации гР уменьшением длины зарождающихся в процессе деформирования микротрещин за счет уменьшения эффективного диаметра зерна [149, 150]. Такая модель не позволила авторам удовлетворительно описать зависимость S eP), что привело их к выводу о существенном влиянии деформационной субструктуры на исследуемые параметры. Следует отметить, что, рассматривая в качестве контролирующего разрушения только процесс страгивания микротрещины и не учитывая условия ее распространения, практически невозможно предложить разумную концепцию влияния пластической деформации на критическое напряжение S .  [c.61]


Сопротивление образованию и развитию трещин малоциклового нагружения в общем случае зависит от циклических свойств металла, режима нагружения и размеров трещин. В работах [1—4] рассмотрены кинетические особенности процессов упругопластического деформирования и деформационные критерии малоциклового разрушения с учетом циклических свойств в связи с анализом условий образования трещин в зонах концентрации напряжений при комнатной температуре. Условия распространения трещин малоциклового разрушения при комнатной температуре с учетом кинетики пластических деформаций в их вершине изучались в работе [5]. В упомянутых работах показано, что долговечность на стадии образования трещин в зонах концентрации напряжений рассчитывается по величинам амплитуд и односторонне накапливав мых местных деформаций с использованием условия линейного суМ мирования квазистатических и усталостных малоцикловых повреждений. Скорости распространения трещин малоциклового нагружения и долговечность на стадии окончательного разрушения вычис ляются по величинам размахов коэффициентов интенсивности деформаций и предельной пластической деформации в вершине трещины.  [c.99]

При исследовании изменения прочности и деформационных свойств полимерных материалов в агрессивных средах наибольшее распространение получили два основных типа испытаний испытания на растяжение (изгиб) при постоянной нагрузке или при постоянном напряжении и испытания на растяжение (изгиб) при постоянной деформации. В первой группе испытаний в качестве параметров процесса разрушения выбирают время для полного разрушения стандартного образца при разных нагрузках (напряжениях) или время до появления видимых поверхностных трещин критическую деформацию разрушения критическое напряжение, на котором через определенное время появляются видимые трещины. Основными параметрами второй группы испытаний являются время растрескивания определенного числа деформированных образцов в жидкой среде скорость разрастания трещин в образце.  [c.56]

В комбинированных испытаниях также достаточно четко прослеживается связь между изменениями в структуре материала и механизмом разрушения. При деформационном старении для распространения термоусталостной трещины создаются препятствия, скопления дислокаций хорошо закрепляются мелкодисперсными выделениями карбидов в зерне. Большое влияние на механизм развития термической усталости аустенитной стали оказывают диффузионные процессы, не характерные для малоцикловой усталости.  [c.120]


Для описания условий разрушения на стадии развития трещин при циклическом нагружении получили широкое распространение критерии линейной и нелинейной механики разрушения. В упругой области или при наличии малых пластических зон в вершине трещины наиболее широко используются силовые (коэффициент интенсивности напряжений п, щ) и энергетические (энергия образования единицы свободной поверхности у или энергия продвижения трещины на единицу длины б), а в случае развитых пластических деформаций (размер пластической зоны в вершине трещины соизмерим с ее длиной) применяются деформационные (критическое раскрытие трещины, предельная деформация в вершине трещины, коэффициент интенсивности деформаций, размер пластической зоны) и энергетические (/-интеграл) критерии.  [c.26]

Разрушение конструкций в результате пластической нестабильности (образования шейки) встречается довольно редко. Такая конструкция должна содержать элементы, работающие в условиях растяжения при мягкой нагружающей системе. Подобная ситуация встречается при эксплуатации стальных канатов в подъемно-транспортных машинах и механизмах рабочие напряжения в канате должны быть значительно меньше временного сопротивления разрыву материала, поломка может произойти только в результате больших перегрузок. Холоднотянутая, сильно нагартованная проволока имеет незначительное равномерное удлинение, поэтому поскольку при перегрузке происходит разрыв ее, то может создаться впечатление, что разрушение произошло по механизму распространения трещины, а не по механизму пластической нестабильности. Типичный пример — разрыв перетянутой металлической струны. Ранее было распространено мнение о том, что материал для сопротивления выходу его из строя путем пластической нестабильности должен иметь высокую способность к деформационному упрочнению. В настоящее время, как указано выше, предел текучести рассматривается как свойство материала, необходимое для предотвращения общей текучести.  [c.13]

Нашли широкое распространение два подхода к оценке сопротивления разрушению сплавов 1) энергетический подход, базирующийся на оценке работы разрушения 2) силовой подход, связанный с оценкой экстремальных компонент поля напряжений в условиях разрушения. В последнее время получает также развитие третий — деформационный — подход, согласно которому оценивают остаточные критические деформации при разрушении.  [c.325]

Наиболее старым и весьма распространенным является энергетический подход, который обычно не требует уточнения конкретной ситуации (напряжений и деформаций) в очаге разрушения. Энергетический подход используют для оценки общей работы разрушения и ее составляющих, связанных с зарождением и распространением трещины. В то же время силовой и деформационный подходы используют преимущественно для оценки сопротивления разрушению на стадии распространения трещины.  [c.326]

Кроме того, даже докритические механические свойства зависят от объема, в котором они проявляются. Например, тот же предел текучести далеко не совпадает со стандартной величиной, если его пытаться определять в малых объемах деформирования, в областях высокого градиента напряженно-деформированного состояния. Кстати, градиент напряженного состояния также существенно влияет на характер распространения разрушения в виде трещины. Нри отсутствии градиента, т. е. при идеально равномерных по объему напряжениях и прочности, разделение тела на части происходит практически мгновенно, в то время как при наличии градиента (что типично для конструкционных элементов) трещина может пытаться расти довольно долго, что, вообще говоря, представляется благоприятным обстоятельством. Наконец заметим, что прочность детали пропорциональна прочности материала лишь до определенного значения предела прочности, выше которого прочность детали не повышается, а падает. Это обстоятельство хорошо известно конструкторам и входит в понятие конструкционной прочности, введенное в свое время С.В. Серенсеном [231]. Нод этим термином понимают явление, при котором прочность конструкции неоднозначно связана с механическими свойствами материала, в частности с его прочностью, и для предсказания деформационного и прочностного поведения конструкции служат интуиция и набор эмпирических правил. Все это означает, что определение напряженно-деформированного состояния совместно с некоторым набором постоянных материала еще не дает уверенности в том, что рассчитываемая деталь на практике будет вести себя именно так.  [c.15]


Более того, благодаря известному эффекту влияния размера зерна на способность к сколу мягких сталей при статических испытаниях [8], величина Фр должна уменьшаться с увеличением размера зерна материала. Отсюда сразу видно, почему распространение разрушения отрывом так облегчено при относительно высоких температурах в описываемых испытаниях и, кроме того, почему размер зерна оказывал такое заметное влияние. Однако следует отметить, что результаты, приведенные в этой статье, не будут точно отражать поведение типичных мягких сталей, испытанных при тех же температурах, если не проведено предварительное охрупчивание последних, например нейтронным облучением или деформационным старением, с тем, чтобы создать условия, предпочтительные для разрушения сколом, по сравнению с разрушением путем пластического разрыва.  [c.149]

В лобовых швах низкоуглеродистых, низколегированных и аустенитных сталей, а также пластичных алюминиевых сплавов при нормальной температуре, концентратор обычно не оказывает заметного влияния на прочность. В тавровых сварных соединениях концентратор ориентирован неблагоприятно относительно силового потока, что может заметно отразиться на деформационной способности при пониженных температурах. Фланговые швы при нагружении деформируются по длине неравномерно. Концентрация сдвиговых деформаций у концов шва вызывает срез участка шва еще до появления полного разрушения. При пониженных температурах, когда проявляется хрупкость металла, это приводит к распространению разрушения по основному металлу. Неравномерность распределения усилий по длине шва особенно заметна в многоточечных сварных соединениях. При числе точек в продольном ряду более пяти предельная нагрузка не возрастает, так как разрушение точек идет последовательно, начиная с крайних (рис. 9-П).  [c.211]

Выбор основного металла для сварных конструкций, работающих при низких температурах, исходя из двух главных условий слабой склонности металла к деформационному старению и достаточно высокой его сопротивляемости распространению разрушений при температурах эксплуатации изделия.  [c.259]

Среди расчетных методов определения циклической жаропрочности наибольшее распространение получили методы, основанные на использовании гипотезы аддитивности повреждений во временной и деформационной трактовке, в соответствии с которыми разрушение наступает тогда, когда равны единице суммы относительных долговечностей или относительных деформаций  [c.164]

Указанное следствие вытекает из второго важного момента предложенной схематизации процесса хрупкого разрушения условия зарождения, страгивания и распространения трещин скола являются независимыми. Разрушение в макрообъеме в зависимости от температурно-деформационных условий нагружения может контролироваться одним из перечисленных процессов. Для случая одноосного растяжения условия зарождения, страгивания и распространения микротрещин скола можно изобразить в виде схемы (рис. 2.7), использовав параметрическое представление в координатах а — Т. Кривая 1 соответствует условию зарождения микротрещин скола, причем это условие не совпадает с условием достижения макроскопического предела текучести. Прямая 2, отвечающая напряжению а=5о, есть условие страгивания. Линия 3 определяет условия распространения микротрещин скола в изменяющейся в процессе деформирования структуре материала. Очевидно, что при условии о От параметр ap = onst, поскольку в этом случае rie сформированы  [c.65]

На первом этапе были изучены продольные шлифы гладких цилиндрических образцов, испытанных на растяжение при Т = = —196°С. Согласно разработанной модели, при одноосном растяжении таких образцов их хрупкое разрушение контролируется процессом распространения микротрещин скола. Зарождение же микротрещин скола начинается в соответствии с условием (2.7) при напряжениях и деформациях меньше разрушающих. Однако эти микротрещины при ai < S будут остановлены различными барьерами (границами зерен, границами фрагментов и т. п.). Поэтому на продольном шлифе должны наблюдаться такие остановленные микротрещины, причем их длина может быть различной — от размера зерна (если микротрещина остановлена границами зерна) до размера фрагмента деформацион-  [c.87]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]


Реализация хрупкого разрушения в ОЦК металлах происходит при выполнении трех условий зарождения острых микротрещин (притупление равно параметру решетки), их страгива-ния и распространения микротрещин скола через различные эффективные барьеры — микронапряжения или границы деформационной субструктуры материала.  [c.146]

Второй возможный механизм развития трещины базируется на следующих представлениях. После объединения микротрещины с макротрещиной идет непрерывное динамическое развитие макротрещины по тем же законам, по которым развивалась и микротрещина отсутствие заметного пластического деформирования у верщины быстро развивающейся трещины (недостаточно времени на реализацию релаксационных процессов в вершине) рост трещины по плоскостям спайности с преодолением различных барьеров типа границ зерен, фрагментов, блоков (см. раздел 2.1). При реализации второго механизма энергия, необходимая для старта трещины, будет отличаться от энергии, идущей на ее рост. Энергия зарождения хрупкого разрушения обусловлена пластическим деформированием, необходимым как для зарождения микротрещин, так и для реализации деформационного упрочнения, обеспечивающего рост напряжений до величины S . Для распространения трещины от одного зерна к другому необходима эффективная энергия не только для образования новых поверхностей, но и для компенсации дополнительной работы разрушения, идущей на образование ступенек и вязких перемычек при распространении трещин скола [121, 327]. Образование ступенек на поверхности скола, как известно, связано с различной ориентацией зерен. При переходе трещины скола через границу зерна в новом зерне из-за различий в ориентации происходит разделение трещины на ряд отдельных трещин, которые распространяются параллельно по кристаллографическим плоскостям спайности и прп объединении образуют ступеньки скола. При распространении макротрещины через отдельные неблагоприятно расположенные зерна, для которых плоскости спайности сильно отклонены от направления магистральной трещины, могут наблюдаться вязкие ямочные дорывы (перемычки) [114, 327]. Учитывая, что для старта макротрещины требуется пластическое деформирование, по крайней мере в масштабе, не меньшем, чем диаметр зерна, а для ее развития масштаб пластического деформирования ограничен размером перемычек между микротрещинами, можно заключить энергия G , необходимая для старта трещины, выше, чем энергия ур, требующаяся на ее развитие. Эксперименты для большинства конструкционных металлических материалов подтверждают сделанное заключение [253]. Следовательно, динамическое развитие трещины при хрупком разрушении наиболее вероятно происходит по второму механизму. Кроме того, в пользу второго механизма говорят имеющиеся фрактографические наблюдения (рис. 4.19), которые иллюстрируют переход трещины скола через границу зерна со значительной составляющей кручения и расщепление зерна рядом параллельных друг другу трещин. Если бы развитие трещины  [c.240]

Охрупчивающий эффект деформационного старения сказывается на ударной вязкости K V трубной стали и ее составляющих K V3 (зарождения трещины) я K Vp (распространения трещины). Наиболее четко эффект старения металла длительно эксплуатированных нефтепродуктов просматривается по относительной протяженности разрушения. Примерно до 10 лет эксплуатации протяженность разрушений сохраняет постоянное значение. При t > 10 лет отмечается значительное увеличение протяженности разрушения.  [c.367]

Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

Похожая картина (рис. 72) наблюдается при распространении усталостной трещины (Г = 293 К) в условиях локального з пругопластического перехода в экономно-легированной мартенситно-стареющей стали ЭП-678, упрочненной мелкодисперсными частицами Ni3Ti [97]. Как показано в работах [73, 78, 97], в этих условиях, вследствие активизации процессов диффузии микроповреждений, в пластической зоне, в вершине усталостной трещины (рис. 12,6), происходит локальное повышение температуры, регистрируемое тепловизорным методом. Последнее, по-видимому, в свою очередь, вызывает взаимосогласованное, автокаталитическое размножение дефектов. В целом процесс усталостного разрушения мартенситно-стареющих сталей приводит к их локальному деформационному разупрочнению [159, 160].  [c.98]

Деформационные подходы, характеризующие уровень возникающих местных пластических деформаций величиной коэффициента интенсивности деформаций а сопротивление продвижению трещины Б зоне предразрушения — величиной циклической пластичности деформации были использованы для описания условий распространения трещин малоциклового разрушения [29] в виде (1.86), гдейГге = и ё/ = е /ет — относительные  [c.24]

Применение /-интеграла для анализа распространения трещины в условиях упруго-пластической деформации отличается от определения /-интеграла в условиях полной деформационной пластичности или нелинейной упругости. Следовательно, параметр Д/, связанный с К уравнением (5.44) или уравнением (6.11), — это только механический параметр, с помощью которого можно так преобразовать данные, чтобы согласовать их с законом распространения усталостной трещины в условиях упругого нагружения (при многоцикловой усталости). Таким образом, чтобы исследовать поведение трещины, удовлетворяющей условиям микротечения при многоцикловой усталости, как и при испытаниях на вязкость разрушения [46 ] Ki и необходимы образцы большого размера. Если же применить образцы малого размера, то можно рассчитать [47 J соотношение dl/dN — К для больших образцов или элементов конструкций с помощью вышеописанного параметра А/, хотя условия в этом случае соответствуют макротечению или течению по всей поверхности.  [c.223]


Для оценки механических свойств полимеров и полимерных материалов широко используют некоторые другие методы. Одним из наиболее важных является метод определения ударной прочности — оценка сопротивления материалов разрушению при высокоскоростном нагружении. При этом измеряют энергию разрушения образцов — показатель, имеющий важное практическое значение, но трудно поддающийся теоретическому анализу и интерпретации. Наиболее распространенными методами определения ударной прочности полимеров являютсд методы, в которых используется свободно падающий груз (шар или острый наконечник [4, 5, 11]), и маятниковые методы (по Изоду [12—14] по Шарпи [12]). Высокоскоростные методы определения деформационно-прочностных свойств при растяжении [15—16] также можно рассматривать как ударные методы. Другими типами  [c.22]

Следует отметить, что широко распространенные энергетические и силовые критерии имеют достаточно наглядную интерпретацию в случае хрупкого разрушения, но хуже интерпретируются в случае вязкого разрушения. В связи с этим наряду с силовыми критериями развиваются деформационные критерии разрушения, которые на основе современной пзмернтельной аппаратуры могут, вообще говоря, достаточно точно экспериментально проверяться.  [c.6]

Предложено несколько методов оценки механических свойств аморфных сплавов. Применительно к ленточным образцам широкое распространение получили испытания на одноосное растяжение, поскольку они дают обширную информацию о механических характеристиках. На рис. 12 приведена типичная кривая напряжение-деформация, характеризующая основные закономерности механического поведения аморфных сплавов высокие значения пределов упругости и текучести, отсутствие деформационного упрочнения и невысокое, но ненулевое значение макроскопической деформации до разрушения. Тем не менее испытания ленточных аморфных сплавов на растяжение имеют ряд существенных недостатков, часть из которых принципиально неустранима. Энергия, высвобождающаяся при пластической деформации, меньше упругой энергии, сосредоточенной в испытательной машине обычного типа. Это приводит к катастрофическому разрушению в процессе одноосного растяжения. Степень катастрофического течения зависит от запаса упругой энергии в деформирующей системе и пропорциональна величине (mjky , где т VL k — соответственно эффективная масса и жесткость испытательной машины. Более Пассивная нагружающая система, хотя и увеличивает продолжительность нестабильного течения, но делает его начало более затруднительным.  [c.170]

Образование кубического, как и гексагонального мар-тенсита деформации, с одной стороны, служит дополнительным источником локального перенапряжения, и тогда способствует более быстрому развитию разрушения с другой стороны, являясь дополнительным механизмом релаксации напряжений, приводит к снижению сопротивления пластической деформации. Возникновение мартенситных кристаллов снимает локальное перенапряжение -и предотвращает зарождение или распространение трещин. Аналогичен и механизм влияния двойников деформации, число которых и степень их участия в повышении пластичности растет с понижением температуры испытания. При деформационной двойниковании увеличиваются равномерные составляющие относительного удлинения и сужения, а соответствующие сосредоточенные уменьшаются. Плотность расположения двойников деформации и их размеры в значительной степени зависят от содержания марганца, чистоты выплавки, температуры испытания и степени пластической деформации. Вклад в повышение уровня относительного удлинения за счет двойникования в сплаве Г29 больше, чем в сплаве Г17, как больше и сам всплеск относительного удлинения.  [c.156]

Изменение температурного режима испытаний оказывает влияние на весь комплекс деформационных характеристик материала, от которых зависят усилия и напряжения, возникающие в образце (модуль упругости, параметры кривых деформирования и характер циклической нестабильности, скорость ползучести). В этом смысле наибольшие затруднения возникают при интерпретации результатов при Г , = onst, когда варьируют Г пах- В испытаниях с варьируемой жесткостью установки ее нижняя граница должна быть определена предварительно по напряжениям, при которых разрушение в рассматриваемых температурных условиях укладывается в диапазон чисел циклов, характерных для малоцикловой усталости. В связи с этими соображениями наибольшее распространение получили испытания при = onst.  [c.121]

Переход к устойчивому росту усталостных трещин на II участке диаграммы усталостного разрушения является результатом изменения механизма разрушения механизм периодического распространения-разрыва приходит на смену низкоэнергоемкому сколу. Таким образом, высокоупорядоченные деформационные структуры могут повышать запас не только пластичности (создавая условия для продолжения пластической деформации [74]), но и живучести, обуславливая реализацию высокоэнергоемкого механизма разрушения, который задерживает распространение усталостной трещины и придает ему устойчивый характер.  [c.57]

При упругих деформациях, представляющих наибольший интерес для высокопрочных материалов, трещина обычно распространяется отрывом с одновременным образованием хрупких бороздок. Механизм распространения усталостных трещин отрывом, предложенный С. Лейрдом (С. Laird), является разновидностью процесса пластического затупления (рис. 1.8). Предполагается наличие пластической деформации в вершине трещины и возможность остановки разрушения отрывом в результате пластического затупления вершины трещины (рис. 1.8, б). Это, в свою очередь, приводит к локализации сдвига в узкие полосы при растягивающих нагрузках (рис. 1.8, в). Так как материал прочный, то его оставшаяся способность к деформационному упрочнению невелика и деформация сдвига локализуется в одной полосе. На следующем цикле нагружения отрыв начинается на той ветке трещины, которая ориентирована примерно в плоскости отрыва. Заметим,  [c.17]

Характеристики разрушения при наличии трещин. Для количественного описания закономерностей распространения макротревдш статического нагружения используются силовые, деформационные и энергетические критерии.  [c.58]

Виды деформаций круглого цилиндра исследовались в работе [1]. При этом строились непрерывные поля скоростей. Пиже на примере одноосного растяжения полого цилиндра рассматривается возможность построения разрывного поля скоростей перемегцений. Исследуются поля деформаций в окрестности поверхности разрыва. Показано, что наибольшие деформации получают частицы материала, находягциеся на внутренней поверхности. Предлагается деформационный критерий разрушения материала. Деформация сплошного цилиндра рассматривается как предельная деформация полого цилиндра при стремлении радиуса внутреннего отверстия к нулю. Рассматривается задача о распространении внутренней трегцины в сплошном цилиндре.  [c.343]

В работе Н. Г. Орехова, Л. М. Певзнер, А. С. Таран-товой и С. Т. Кишкина [9, с. 46] было показано, что в результате деформационного старения ряда высокопрочных сталей после деформации 2% и отпуска при 150°С предел текучести резко возрастает, предел прочности увеличивается сравнительно немного, относительное удлинение существенно уменьшается. При этом равномерное удлинение практически равно нулю, при незначительном уменьшении поперечного сужения, сохранении вязкого излома как при растяжении, так и при кручении. Наблюдается также некоторое понижение работы распространения трещины при испытании ударных образцов (табл. 1), однако работа разрушения образцов с трещиной в результате деформационного старения возраста-  [c.22]

Выбор основного металла для сварных конструкций, обладающих малой склонностью к деформационному старению и достаточно высокой сопротивляемостью распространению разрушений при температурах 1ксплуатации изделия.  [c.115]

Физическая сущность формирования ПС с неоднородными свойствами обусловлена специфическими особенностями развития пластических деформаций и температур в зоне резания, их вероятностным характером из-за существенного влияршя случайных факторов. При пластической деформации формируются локальные очаги с повышенной плотностью дислокаций, которые являются потенциальными источниками зарождения трещин, неоднородно распределяемых в зоне разрушения. Случайный характер расположения зерен металла, направлений их кристаллографических плоскостей, распределения дефектов кристаллов и их скоплений, которые также могут служить источниками зарождения трещин или барьерами их распространения, усложняют картину физических процессов в зоне резания и формирования ПС. Поэтому даже при практически постоянных параметрах режимов резания и режущего инструмента характеристики микрорельефа обработанной поверхности, деформационного упрочнения (глубина и степень наклепа), напряженное состояние ПС будут случайными величинами. Положение точки раздела материала, уходящего со стружкой и деталью, ограничено положением очага разрушения возле режущей кромки, имеющей радиус округления. Чем больше очаг разрушения, тем выше вероятность того, что будут возрастать колебания толщины деформированного слоя и характеристик субструктуры упрочнения, т.е. формирование ПС детали с нестабильными свойствами.  [c.110]



Смотреть страницы где упоминается термин Разрушения деформационные распространение : [c.77]    [c.14]    [c.243]    [c.247]    [c.89]    [c.77]    [c.248]    [c.33]    [c.368]    [c.560]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.62 ]



ПОИСК



Деформационные швы

Разрушения деформационные



© 2025 Mash-xxl.info Реклама на сайте