Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система автоматизированного определение

В машиностроении все шире используют системы автоматизированного проектирования технологических процессов (САПР ТП), что вызывается все возрастающим ростом объема машиностроения, усложнением конструкций изделий и технологических процессов, сжатыми сроками технологической подготовки производства и ограниченной численностью инженерно-технических кадров. САПР ТП позволяет не только ускорить процесс проектирования, но и повысить его качество путем рассмотрения большего числа возможных вариантов и выбора самого лучшего по определенному критерию (по себестоимости, производительности и др.).  [c.108]


На первом уровне автоматизации технологические роторные автоматы образуют независимые модули, и объединение их в производственные системы представляет определенные трудности. Межстаночное транспортирование предметов обработки, накопление заделов, разделение или соединение потоков предметов при их передаче на очередную операцию обработки, контроля или сборки осуществляются вручную или с помощью средств механизации. Обычно отсутствует единая информационная основа для управления качеством продукции и работой отдельных автоматов, что сдерживает применение автоматизированных систем управления технологическими процессами (АСУ ТП).  [c.290]

Ограниченные или неограниченные первичные поверхности и часто применяемые их сочетания образуют заранее определенный набор типовых поверхностей, которые в системе автоматизированного проектирования приняты как исходные. Типовые поверхности подразделяются на группы по следующим признакам форме, степени, нормализации, функциональному назначению, способу построения. Каждая из них однозначно описывается кодом и номенклатурой размеров или характеристик. Типовая поверхность снабжается автономной системой координат, которая определяет ее положение в пространстве. Примерная классификация типовых поверхностей приведена в табл. 3. Эта таблица может быть в любой степени дополнена и расширена, а если это возможно, то и сокращена.  [c.83]

Под специализированными САПР понимают такие системы проектирования, область применения которых ограничивается определенным классом конструкций, например САПР грузового автомобиля, САПР строительных конструкций, САПР тракторов и т. д. Инвариантные САПР — это такие системы автоматизированного проектирования, область применения которых не ограничена определенными сферами применения, например система автоматизации прочностных расчетов методом конечных элементов может быть инвариантна по отношению к автомобилю, строительной конструкции, трактору и т. д.  [c.19]

Автоматизированный информационно-аналитический комплекс в области качества и сертификации — КС-комплекс (КСК) — предназначен для многоаспектного решения задач по качеству и сертификации в процессе производства продукции. Методологической основой решения задач комплекса являются требования к системам качества, определенные в международных стандартах ИСО 9000.  [c.278]

Таким образом, предлагаемый в данной работе теоретический подход к вычислению эффективного коэффициента ослабления гамма-излучения позволяет исследовать чувствительность метода гамма-дефектоскопии к различным структурным параметрам древесины и их особенностям, представляющим собой пороки древесины. Он окажется полезным при построении математической модели компьютерной томографической установки, на базе которой может быть разработана высокоточная автоматизированная система по определению качества древесных материалов.  [c.188]


В предлагаемой книге сделана попытка переработать и систематизировать известный методический материал и на этой основе разработать методики определения оптимальных параметров конструкции. Для решения задач проектирования проведен анализ условий оптимальности тонкостенных конструкций и разработаны алгоритмы определения оптимальных параметров для различных видов оболочек и схем нагружения. Для нахождения правильного конструктивного решения, обеспечивающего минимальную массу, необходимо знать, как и в какой степени те или иные параметры и технология изготовления влияют на прочность, а также представлять себе поведение конструкции при разрушении. Предлагаемая книга позволяет решить эти вопросы наиболее простым способом. Разработанные алгоритмы дают возможность включить полученные решения в комплексную задачу определения оптимальных параметров изделия в целом в системе автоматизированного проектирования.  [c.3]

Среди специалистов по информационным технологиям и системам автоматизированной обработки экономической информации наиболее устоявшимся является определение АРМ как некоторой совокупности аппаратных, программных, методических и языковых средств, обеспечивающих автоматизацию функций пользователя в некоторой предметной области и позволяющих оперативно удовлетворять- его информационные и вычислительные потребности, используя программное и информационное обеспечение преимущественно на магнитных дисках.  [c.281]

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ — ОПРЕДЕЛЕНИЯ, ОСНОВНЫЕ ПОНЯТИЯ  [c.141]

Рабочее место оператора. Взаимное расположение элементов рабочего места. Общие эргономические требования. гл. 10 Болты высокопрочные (нормальной точности). Конструкции и размеры. гл. 6 Гайки высокопрочные (нормальной точности). Конструкции и размеры. гл. 6 Шайбы к высокопрочным болтам (нормальной точности). Конструкции и размеры. гл. 6 Болты и гайки высокопрочные и шайбы. Общие технические требования. гл. 6 Проектирование автоматизированное. Термины и определения. гл. 7 Тали электрические канатные. Технические условия. гл. 2 Системы автоматизированного проектирования. Общие требования к программному обеспечению. гл. 7 Дуговая сварка в защитных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры. гл. 6 Краны мостовые электрические. Технические условия. гл. 6, 10  [c.314]

На ЭВМ возлагаются не только геометрические расчеты, но и отдельные этапы технологического проектирования построение оптимальных траекторий движения инструментов определение последовательности операций выбор инструментов и т. д. В результате САП становится системой автоматизированного проектирования технологических процессов (САПР ТП). Как правило, каждая из современных САП предназначена для станков определенной группы (токарных, фрезерных, расточных, сверлильных). САП подразделяются на следующие группы 1) универсальные, позволяющие программировать обработку широкой номенклатуры деталей, контуры которых ограничены простыми, наиболее распространенными поверхностями (плоскость, цилиндр, конус, сфера и т. д.) 2) специальные — для программирования обработки сложных поверхностей определенного типа. В общем случае структура современной САП (рис. 17.17) и процесс переработки исходных данных в УП выглядят следующим образом. Подготовка исходных данных состоит в том, что технолог-программист с помощью специального технологического языка записывает основную информацию для программирования геометрические характеристики деталей с чертежа название станка, на котором будет обрабатываться заготовка марку материала детали общие технологические указания (например,  [c.363]

Основные проектные процедуры, выполняемые при проектировании в различных автоматизированных системах, следующие определение структуры объекта проектирования расчет и оптимизация параметров, характеризующих проектные решения.  [c.606]


Блоком системы автоматизированного проектирования называют часть системы, имеющую функциональную определенность (например, блок ограничений, блок газодинамического расчета и т. п.).  [c.621]

На сложные детали приспособлений может быть разработана технология механической обработки, включая изготовление управляющих программ для станков с ЧПУ. К настоящему времени созданы и внедрены на отдельных заводах системы автоматизированного конструирования типовых приспособлений для сверления плоских деталей, а также для обработки заготовок типа тел вращения. В основе этих систем лежит широкое использование типовых решений и определенное ограничение исходных данных задача обычно решается с чисто геометрических позиций, без расчетов погрешностей обработки, спл закрепления, экономической эффективности и решения многих других вопросов. Автоматизация конструирования более сложных и нетиповых приспособ-  [c.193]

На страницах профессиональных и научно-популярных изданий все чаще мелькает термин безлюдная технология , которая по определению якобы исключает человека из производства и тем самым решает все проблемы человеческого фактора. На практике ситуация складывается совсем не так. Исследования показали, что в любой автоматизированной, гибкой, интегрированной системе сохранятся определенные виды деятельности человека наблюдение, вмешательство, обслуживание, дублирование, ввод данных, управление, контроль и другие.  [c.5]

Гибкая производственная система — совокупность или определенная единица технологического оборудования и системы его функционирования в автоматическом режиме, обладающая свойствами автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик. По организационной структуре ГПС разделяют на следующие уровни гибкий производственный модуль (ГМП) гибкая автоматизированная линия (ГАЛ) гибкий автоматизированный участок (ГАУ)  [c.144]

Наличие большого объема информации о технологическом процессе, о состоянии среды, об относительном расположении в пространстве объектов манипулирования открывает широкие возможности автоматизации разнообразных операций, включая такие тонкие, как сварка элементов сложной формы, сборка узлов с компактным расположением деталей. При этом робототехническая система выбирает нужные детали из полного комплекта, поступающего на рабочую позицию, регулирует транспортные потоки, В конечном счете именно такие робототехнические системы окажутся элементами, связываюш,ими отдельные технологические операции в единую цепь полностью автоматизированного производства. Здесь, говоря об автоматизации производства, мы имеем в виду не те узкоспециализированные машины-автоматы, которые создаются для выпуска определенного вида продукции. Речь идет о широком использовании универсального оборудования с числовым программным управлением, переналадка которого сводится, по сути дела, к смене программы работы.  [c.11]

Специальное программное обеспечение машинной графики включает программы и подпрограммы формирования и преобразования изображений, генерации дисплейного кода и обработки дисплейного файла, а также опознавания и идентификации вво димых изображений. В отличие от аппаратурных средств программные средства обладают большой гибкостью и могут по желанию пользователей в значительной мере модифицироваться и развиваться. Определенной модификации могут подвергаться и аппаратные средства с учетом широкого использования различных интегральных схем. Воздействуя на программные и аппаратные средства, типовые системы машинной графики можно лучше приспособить к требованиям пользователей. В конечном счете именно эти требования определяют как конфигурацию, так и соотношение программных и аппаратных средств машинной графики при построении достаточно развитых автоматизированных систем.  [c.179]

Оперируя совокупностью количественно определенных требований ТЗ, можно организовать автоматизированный поиск аналогов среди известных близких по назначению объектов, описания которых хранятся в базе данных, по типу того, как это делается в примере, приведенном в 4.2. Однако следует с большой долей вероятности ожидать, что среди известных разработок не будет обнаружено варианта, в полной мере удовлетворяющего всем требованиям ТЗ на новый объект. В то же время в каждом конкретном случае не все требования одинаково важны. Поэтому задачей анализа ТЗ, предваряющего процедуру выбора аналогов, является определение относительной важности включенных в него требований, путей и сложности их выполнения. Здесь необходимо учитывать назначение проектируемого ЭМУ, а в ряде случаев и особенности его применения в составе более сложной системы.  [c.193]

Задачи газовой динамики встречаются в самых разных областях науки и техники. Поэтому создание специальных программных средств, ориентированных на решение определенных классов аэродинамических задач, в настоящее время весьма актуально. Автоматизация расчета таких задач позволяет уменьшить параллелизм в создании программного продукта, улучшить его качество, облегчить общение пользователя с ЭВМ, ускорить создание программ для решения на ЭВМ задач аэродинамики. В нашей стране для различных областей математической физики на основе современных численных методик созданы библиотеки программ. Широкое распространение получили автоматизированные системы прикладных программ, ориентированные на определенную предметную область — пакеты прикладных программ (ППП). Этому способствовали успехи в развитии эффективных численных методов, совершенствование операционных систем, создание различных инструментальных систем, развитие языковых средств. В настоящее время разработаны пакеты различного назначения и уровня.  [c.213]

Авторы предлагаемой книги предприняли попытку систематизировать и обобщить основные методы и методики научно-технического прогнозирования, применяемые в отечественной и зарубежной практике. Оценка приведенных методов дается с позиции возможности их использования при прогнозировании развития конструкционных материалов для машиностроения. Приводится целый ряд конкретных примеров, сформулированы основные принципы построения автоматизированной системы прогнозирования материалов. Известное ленинское выражение металл — это хлеб промышленности ярко характеризует тот факт, что технический прогресс любой отрасли народного хозяйства связан с производством материалов, обладающих определенным комплексом физических, механических, специальных свойств.  [c.3]


На основе достигнутых результатов в области автоматического управления в настоящее время намечается значительно увеличить производство новых, более совершенных средств автоматизации контроля и регулирования технологических процессов и приборов для точных измерений. Предстоит освоить серийное производство автоматизированных комплексов оборудования для различного рода отраслей тяжелой и легкой промышленности. Широкое использование электронно-вычислительной техники и управляющих вычислительных машин приведет к подлинной революции не только в технологии производства, но и в экономике, планировании, учете, проектно-конструкторских разработках и в научных исследованиях. Комплексные системы управления, включающие вычислительные машины и средства связи, передающие информацию с предприятий, обеспечат значительное улучшение оперативного руководства промышленностью, строительством, работой транспорта и научное определение оптимальных вариантов плановых заданий. Эти комплексные системы управления примут на себя функции по различным инженерным, экономическим и финансовым расчетам и в значительной мере автоматизируют учет и планирование народного хозяйства.  [c.284]

Основные данные для подготовки УП обработки на станке с ЧПУ содержатся в чертеже детали. Но перед вводом в ЭВМ геометрические параметры необходимо представить в закодированном виде. Для описания информации в требуемом виде используется специальный входной язык системы автоматизированной подготовки управляющих программ (САП УП). Входные языки существующих САП, таких, как APT, ЕХАРТ, СПС — ТАУ, АПТ/СМ и др., близки по структуре. Они состоят из алфавита языка инструкций определения элементарных геометрических объектов (точки, прямые линии, окружности) инструкций движения способов построения строки обхода введения технологических параметров способов разработки макроопределений и построения подпрограмм способов введения технологических циклов способов задания различных вспомогательных функций и т. п. Эти системы характеризуются тем, что все основные технологические решения даются технологом, так как входной язык ориентирован только на построение траектории перемещения инструмента, а технологические вопросы, связанные с обеспечением заданной точности и последовательности обработки, выбора инструмента и т. д., не могут быть решены на основе применения входного языка. Для автоматизации проектирования технологических процессов разработаны языки, позволяющие решать технологические задачи. Однако геометрическое описание детали, полученное с помощью этих языков, недостаточно детализировано для проектирования управляющих программ. Поэтому для комплексных автоматизированных систем конструирования и технологического проектирования, включая подготовку УП к станкам с ЧПУ, необходим многоуровневый язык кодирования геометрической информации, учитывающий специфику каждого этапа проектирования.  [c.169]

Экспертная система . Данная система выполняет определенное множество эвристических функций присутствуюш,их в алгоритмах методик автоматизированного проектирования РЭС. К таким функциям, например, относятся операции по обработке матриц чувствительности при выборе управляюш,их параметров операции по принятию решений, основанных на анализе результатов моделирования операция внесение изменений в проект и др.  [c.96]

ГОСТ 1 3699-91 Запись и воспроизведение информации. Тфмины и определения ГОСТ Р 51141-98 Делопроизводство и архивное дело. Тфмины и определения ГОСТ 1 5971-90 Системы обработки информации. Тфмины и определения ГОСТ 34.003-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Тфмины и определения  [c.131]

Вместе с тем, поскольку в работе водителя за рулем автомобиля непрерывно снижается доля физиче-скбго труда и все более повышается психологическая нагрузка, возникает необходимость правильного понимания особенностей умственной деятельности. Умственный труд более, чем физический, истощает жизненные силы. Нервная система имеет определенный предел работоспособности, и при чрезмерной нагрузке может произойти срыв нервной деятельности. Выработка автоматизированных схем мышления и действий, снижая психологическую нагрузку, облегчает умственную, деятельность, экономит силы водителя.  [c.286]

Модули — это наименьшие структурные элементы блока (для определения растягивающих напряжений, расчета крутящего момента и т. п.). Каждый из блоков системы выполняет определенные задачи, имеет свою входную и выходную информацию, составляется и доводится отдельно и только после этого включается в систему автоматизированного проектирования. Среди блоков системы следует выделить стандартные (например, блок решения систем уравнений, блок - плоской задачи теории упругости). Стандартные блоки инвариантны по отношению к элементам и узлам изделия и включаются в математические модели как стандартные эле 1 екты. При формировании стандартных блоков широко используют библиотеку стандартких программ. Применение блочно-модульного принципа необходимо, так как попьггки создания системы всей сразу всегда заканчивались неудачей.  [c.674]

Согласно ГОСТ 22487—77 система автоматизированного проектирования — это комплекс средств автоматизации ироектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющий автоматизированное проектирование. Автоматизированное проектирование — это проектирование, при котором отдельные преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представление описаний на различных языках осуществляются взаимодействием человека и ЭВМ. Таким образом, САПР представляет собой симбиоз человека и определенных средств обеспечения автоматизированного ироектирования. Участие человека в процессе проектирования является фактором, определяющим отличие автоматизированного проектирования от автоматического.  [c.8]

Стадия предпроёктных Исследований чрезвычайкб важна и во многом определяет эффективность разрабатываемой САПР. Цель этой стадии — определение целесообразности и возможности создания системы автоматизированного проектирования и, в случае положительного решения, сбор необходимых данных для разработки технического задания на создание САПР.  [c.17]

Основой системы автоматизированных расчетов цикловых механизмов (САРЦМ) является обобщенный метод преобразования координат. На основании универсальных уравнений обобщенного метода преобразования координат можно получить уравнения движения для любого плоского механизма. В САРЦМ в основу алгоритма задания структурной схемы механизма положен принцип разбиения механизма на отдельные звенья и присвоения каждому типу звена номера, под которым на магнитном диске хранятся заготовки файлов исходных данных для каждого звена под определенным именем. При таком подходе структурная схема механизма задается в виде матрицы строения механизма. В качестве начального звена может быть выбран кривошип, кулиса или кулачок. Большое количество звеньев, составляющих группы Ассура, позволяет определить кинематические параметры практически любого плоского механизма. По данным матрицы строения механизма машина запрашивает у пользователя необходимые исходные данные и формирует их в порядке, необходимом для применения обобщенного метода преобразования координат.  [c.323]


В ГОСТ 23501.0-79 [2] дано следующее определение Система автоматизированного проектирования — это организационно-техническая система, состоящая из комплекса средств автоматизации проектирования (КСАП), взаимосвязанного с подразделениями проектной организации (П1, П2,. .., Пп), и выполняющая автоматизированное проектирование . Структура САПР приведена на рис. 1.8.1.  [c.141]

ИИС, эксплуатация которой описывается марковской моделью с дискретными состояниями и непрерывным временем, выполняет измерения и измерительный контроль параметров обслуживаемого изделия, находясь в одном из двух возможных состояний — работоспособном состоянии 5i) и неработоспособном со скрытым (параметрическим или метрологическим) отказом (состояние S2), интенсивности перехода в которые Ко и Лс соответственно. Находясь в этих состояниях (Si и S2), ИИС может внезапно отказать с интенсивностью Ля и переходить в неработоспособное состояние (S3), при этом ее отстраняют от работы и переводят в состояние восстановления (54). Из состояния работоспособности 5i ИИС может с периодичностью Т подвергаться поверке (Ss) и с периодичностью 7с,1 — самоповерке (Зю). Под самоповеркой понимают автоматизированное определение работоспособности измерительной системы с помощью встроенных в нее образцовых средств измерений по определенной, обычно сокращенной, программе.  [c.127]

Берштейн Л.С., Боженюк А.В. Определение предпочтительных параметров деталей в машиностроении при автоматизированном проектировании // Системы автоматизированного проектирования в машино- и приборостроении. Всесоюзная научно-прикладная конференция Тез. докл. Кишинев КПИ, 1986. С. 25-27.  [c.134]

Автоматизация проектирование Эффективность 126, 127 Автоиатизированная система технологической подготовки производства (АСТПП) — Определение 242 — Применение 105 — Разработка 10S — Структурная схема 242. 243 Автоматизированная система иистру-ментального обеспечения (АСИО) — Назначение 254  [c.311]

Структуру системы управления движением промышленного робота можно проследить по схеме, приведенной на рис. 18.4, отражающей определенные уровни управления. На первом уровне автоматизированные приводы для всех степеней подвижности обеспечи-ванэт движение исполнительных звеньев и механизмов робота в пределах рабочей зоны с помощью управляющих программ по каждому частному циклу. Информация о положении исполнительных звеньен, характеристиках внешней среды и объекта манипулирования вырабатывается датчиками и по каналам обратной связи передается оператору или в специальные устройства более высоких уровней управления для внесения коррективов в движение, если в этом возникает необходимость. Формирование сигналов управления движением приводов и устройствами автоматики обычно осу-  [c.481]

Конечные элементы могут быть построены различной формы, для различных видов деформации (плоская задача, изгиб пластин, деформации элемента оболочки, стержня и т. д.). Каждый из элементов характеризуется его матрицей жесткости R. Если они построены, то метод конечных элементов позиоляет по изложенной схеме создавать любые композиции (ансамбли) из различных конечных элементов. Причем определение деформированного состояния такой композиции или ансамбля (приближенно заменяющего реальную конструкцию) сводится к составлению и решению системы линейных алгебраических уравнений типа (8.71). В настоящее время существуют автоматизированные комплексы программ, позволяющие рассчитывать по методу конечных элементов очень сложные конструкции с числом неизвестных перемещений, соствляющим тысячи или даже десятки тысяч единиц. Он успешно также применяется в решении нелинейных задач и задач динамики деформируемых систем.  [c.263]

Важнейшей задачей при создании Единой автоматизированной сети связи (ЕАСС) является стандартизация требований на аппаратуру вторичного уплотнения, телеграфные и фототелеграфные каналы, нормы, общие технические требования и методы испытаний комплекса оборудования ЕАСС и его составных частей. В числе стандартов, утвержденных в последние годы, можно назвать ГОСТ 22348—77 Единая автоматизированная система связи. Термины и определения , ГОСТ 21656—76 Единая автоматизированная сеть связи. Каналы тонального телеграфирования с частотной модуляцией. Типы и основные электрические параметры , ГОСТ 22933—78 Единая автоматизированная сеть связи. Установки оконечные телеграфной связи и передачи данных. Требования по взаимодействию с сетями АТ-50 и ПД-200 и др.  [c.18]

В щироком смысле слова к математическому обеспечению ALS-технологий можно отнести математические методы и алгоритмы, используемые в автоматизированных системах проектирования, производства и логистики на разных этапах жизненного цикла изделий. Так, для понимания моделей, выраженных средствами прикладных протоколов STEP, требуются определенные знания в области математического обеспечения соответствующих приложений. В первую очередь среди приложений следует назвать конструкторское проектирование в маншностроении, а основу его математического обеспечения составляют модели и методы геометрического моделирования, включая методы визуализации и преобразования 3D и 2D моделей. Кроме того, в приложениях используются разнообразные методы анализа и оптимизации проектных и управленческих рещений.  [c.191]

Необходимо отметить, что перечисленные этапы имеют много общих процедур определение средних, дисперсий, решение системы нормальных уравнений, построение графиков, определение значений критерия Стьюдента и Фишера. Поэтому целесообразно не разрабатывать отдельные вычислительные программы для ЭВМ, а построить на базе ЭВМ автоматизированную систему обработки статистических данных (АСОСД), основанную на модульном принципе.  [c.184]


Смотреть страницы где упоминается термин Система автоматизированного определение : [c.97]    [c.121]    [c.355]    [c.24]    [c.45]    [c.278]    [c.117]    [c.3]    [c.78]    [c.198]   
САПР и автоматизация производства (1987) -- [ c.66 , c.67 ]



ПОИСК



Автоматизированная система технологической подготовки производства АСТГ1П) — Определение 242 — Применение 105 — Разработка 106 Структурная схема

Общие сведения о проектировании — Системы автоматизированного проектирования — определения, основные понятия

Основные понятия и определения систем автоматизированного проектирования режущего инструмента (В. А. Гречишников)

Система определение

Системы автоматизированного



© 2025 Mash-xxl.info Реклама на сайте