Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Станки исполнительные

В системах автоматического управления и регулирования металлорежущих станков исполнительный орган должен перемещать большие массы рабочих органов станка. В этом случае используются электродинамические системы прямого преобразования непрерывных электрических сигналов в непрерывное угловое перемещение вала электродвигателя или электромашинного усилителя.  [c.63]


В современных станках исполнительные органы для обработки деталей осуществляют часто весьма сложные движения, например электродвигатель и режущий инструмент связаны сложными передаточными механизмами. Совокупность таких механизмов условно изображается в виде кинематической схемы станка. Такая схема позволяет наглядно проследить передачу движений от электродвигателя к отдельным деталям и узлам.  [c.117]

Реечный механизм применяют для передачи движения столам, суппортам и ползунам станков. Исполнительный орган получает движение при перемещении реечного колеса  [c.299]

В положении частей, показанном на рио. 100, а, золотник 6 перекрывает доступ масла к гидроусилителю и он не работает. Но достаточно повернуть золотник на очень небольшой угол (рис. 100, б), чтобы масло от гидронасоса по каналу Д, кольцевой канавке корпуса следящего устройства и отверстию 0 втулки 5 попало в паз Пх золотника и далее через канавки ВI и распределитель 4 в ротор гидроусилителя, поворачивая его в том же направлении, что и золотник. Масло на слив удаляется из гидроусилителя через кольцевую канавку В и паз золотника в отверстие Оз втулки 5, канавку Вд и канал С (рис. 100, а и в). Если вращать золотник с помощью шагового двигателя непрерывно, то одновременно, догоняя его, будет вращаться и ротор гидроусилителя, а вместе с ним ходовой винт станка исполнительный орган станка получил движение подачи.  [c.222]

Эта программа является своего рода технологической картой, но записанной на перфокарте, перфоленте или магнитной ленте в зашифрованном виде. Считывает программу специальное устройство. С пульта управления автоматически, в виде импульсов электрического тока, подается команда исполнительным органам станка. Каждому такому импульсу соответствует перемещение исполнительного органа станка на определенную величину, называемую шагом импульса.  [c.37]

Эта программа является своего рода технологической картой, но записанной на перфокарте, перфоленте или магнитной ленте в зашифрованном виде. Считывает программу специальное устройство. С пульта управления автоматически, в виде импульсов электрического тока, подается команда исполнительным органам станка. Каждому такому  [c.32]

Необходимо указывать на чертежах допустимую огранку поверхностей. Огранка получается вследствие того, что перемещение исполнительных органов станка происходит не непрерывно, а дискретно. Например, непрерывная кривая, направленная по дуге окружности, заменяется вписанной ломаной линией, обычно составленной из отрезков прямых. Такая замена называется аппроксимацией. В ряде случаев при аппроксимации бывает допустима весьма значительная даже видимая невооруженным глазом огранка. Это и должно быть оговорено на чертеже для облегчения расчета программирования.  [c.34]


Под кинематической схемой металлорежущего станка понимают условное изображение всех механизмов и передач, которые передают движение от привода к исполнительным органам станка.  [c.288]

Механизм подачи станка обеспечивает перемещение заготовки, установленной на столе, в двух взаимно перпендикулярных направлениях — продольном и поперечном. Шпиндель станка вместе с ползуном перемещается в вертикальной плоскости. Эти три движения осуществляются от трех исполнительных механизмов. Каждый из них состоит из электродвигателя М. , М ), который управляет гидродвигателем (Гд, Г , Г . Гидродвигатели приводят в движение рабочие органы станка (стол и ползун) через зубчатые колеса и шариковые винтовые пары 2, 3, 4). Каждому импульсу, поступающему от системы ЧПУ, соответствует перемещение ползуна со шпинделем или стола на 0,01 мм. Скорость подачи 20—600 мм/мин.  [c.293]

Различные системы программного управления металлорежущими станками служат для автоматического регулирования перемещений исполнительных органов станка по заданной программе, необходимых для выполнения процесса обработки.  [c.288]

В приводе, который используется в системе управления станка, самолета, корабля или другого объекта, могут отсутствовать некоторые функциональные блоки. Однако структуру привода может определять комбинация некоторых ключевых функциональных блоков ДП, ШВП, БР, ЭДВ (исполнительный двигатель электрического типа), УМз и УМ . Наличие или отсутствие каких-либо из перечисленных элементов позволяет определить структуру всего привода подач рабочего органа машины. Наличие или отсутствие ключевых элементов привода будем обозначать приравниванием соответствующих коэффициентов К единице или нулю. Датчику перемещения поставим в соответствие коэффициент Кп, ШВП — коэффициент K , БР — коэффициент Кг, ЭДВ — коэффициент Кз, УМз — коэффициент К4 и УМг — коэффициент Кз.  [c.33]

Перед обработкой первой заготовки необходимо определить положение исполнительных поверхностей приспособления в системе координат станка. Положение опорно-установочных элементов приспособления на станках регулируют размерной настройкой. На станках с ЧПУ возможно последовательное выполнение в одной операции большого числа разнородных переходов, осуш,ествляемых различными режущими инструментами.  [c.226]

Для вывода из ЭВМ результатов проектирования в виде чертежей, имеющих необходимые пояснительные тексты, применяются графопостроители (ГП), которые представляют собой станки с числовым программным управлением, режущий инструмент которых заменен пишущим узлом, а в качестве исполнительного органа, как правило, применяются электроприводы, осуществляющие перемещения пишущего узла по взаимно перпендикулярным осям. В основе работы ГП лежит преобразование команд ЭВМ в цифровой форме в пропорциональные перемещения пишущего узла. Общая структурная схема ГП представлена на рис. 2.6. Информация в ГП может поступать непосредственно от ЭВМ через канал связи. Однако если объем информации велик, то целесообразно использовать автономный режим работы ГП, вводя данные с перфокарт, перфолент или магнитных лент. Кроме показанных устройств ввода могут также использоваться гибкие магнитные диски и кассетные магнитные ленты. Обычно пишущий узел для выполнения чертежей снабжается набором специальных перьев, обеспечивающих различную толщину линий.  [c.35]

Третья группа — с регулируемой скоростью движения выходного звена. К этой группе относится гидропривод проходческих комбайнов и буровых станков для подачи исполнительного органа на забой и др.  [c.207]

Как указывалось выше, обе рассмотренные схемы не обладают постоянством скорости выходного звена гидродвигателя при переменной нагрузке. Поэтому гидропривод с дроссельным регулированием применяется главным образом в машинах с мало изменяющейся нагрузкой или когда с увеличением нагрузки необходимо уменьшить скорость исполнительного органа, и наоборот (например, бурильные станки).  [c.212]

Рассмотрим схему, показанную на рис. 222. На этой схеме каждый из электродвигателей 10 является приводом соответствующего исполнительного механизма продольного суппорта, поперечного суппорта и других объектов токарного станка.  [c.370]


Машины делят в основном на две большие группы машины-двигатели и рабочие машины. Машины- двигатели — энергетические машины, предназначенные для преобразования энергии любого вида в энергию движения исполнительных органов рабочих машин. К таким машинам относят электродвигатели, двигатели внутреннего сгорания, паровые машины и т. п. Рабочие машины предназначены для облегчения и замены физического труда человека по изменению формы, свойств, состояния, размера и положения обрабатываемых материалов, для перемещения различных грузов, а также для облегчения и замены его логической деятельности при выполнении расчетных операций и операций контроля и управления производственными процессами. К таким машинам относят всевозможные станки для обработки материалов, дорожные, сельскохозяйственные и транспортные машины, подъемные краны, транспортеры, вычислительные машины, устройства робототехники манипуляторы , автооператоры , промышленные роботы и др.  [c.6]

Во многих отраслях современного автоматостроения (как, например, в металлообрабатывающих станках-автоматах) производственный процесс построен с расчетом на чередование и периодическое изменение относительного положения различных исполнительных (обрабатывающих) органов и обрабатываемого объекта. При проектировании поворотных механизмов, осуществляющих  [c.162]

Исполнительные органы автоматического балансировочного станка действуют по сигналам, поступающим от измерительного устройства, и служат для удаления части материала ротора сверлением или фрезерованием после его остановки или же мгновенной наплавкой материала без остановки ротора (взрыв проволочек в магнитном поле). Без остановки ротора возможно также устранение дисбаланса с помощью лазера, испаряющего часть материала.  [c.130]

По заданной программе происходит перемещение исполнительных органов станка на необходимую величину, а также происходит смена режущего инструмента. Производительность труда при работе на станках с ЧПУ увеличивается в 3 — 5 раз по сравнению с универсальными станками без автоматического управления при изготовлении продукции в мелкосерийном и серийном производстве. Эффективность использования станков с ЧПУ в этих производствах обусловлена незначительным временем, необходимым для переналадки системы для обработки другого типа — размера детали.  [c.78]

Подвижные детали и узлы, на которых закреплены рабочие органы или обрабатываемые изделия, называют исполнительными органами технологической машины. В токарном станке, например, исполнительными органами являются суппорты и шпиндель.  [c.275]

В манипуляторах с автоматическим управлением звенья исполнительного механизма получают движения от сервоприводов, работающих по заданной программе подобно станкам с программным управлением. Управляющий механизм служит в этом случае только для выработки программы работы исполнительного механизма. Все действия оператора, связанные с перемещением звеньев управляющего механизма, преобразуются посредством датчиков перемещения в электрические или механические сигналы и записываются на магнитную ленту или перфоленту. Полученная. программа может многократно использоваться для управления манипулятором.  [c.550]

Изменение размера детали 6 в процессе ее обработки фиксируется датчиком 4, установленным в трехконтактной скобе 5. О размере детали можно судить по показаниям прибора 2 и по загоранию сигнальных лампочек 3. Кроме того, сигнал датчика через усилитель 1 подает команду исполнительному устройству 7 станка, которое, перемещая шлифовальную бабку, изменяет ее положение, регулируя режим обработки (черновое и чистовое шлифование, выхаживание) и получение окончательного размера обработанной детали. .  [c.456]

Вся информация направляется в механизм управления, имеющий специализированное вычислительное устройство, которое рассчитывает необходимую величину компенсации, вводит соответствующие поправки в программу работы станка и дает команды на включение механизмов подналадки, исправляющих изменившиеся параметры исполнительных механизмов. В сложных станках-автоматах возможно также введение блока, который запоминает и анализирует информацию, попадающую механизм управления от датчиков, и вырабатывает наиболее рациональную коррекцию программы управления станком.  [c.465]

Для предупреждения возможности получения дефектных деталей из-за сбоя в работе вычислительного устройства или возникновения непредусмотренных системой управления ситуаций обрабатываемые детали пропускаются через датчик предельных размеров, который фиксирует только выход размеров детали за пределы поля допуска. Сигналы о наличии бракованных деталей поступают в блок аварийной остановки станка. Вычислительное устройство управляет через цифро-аналоговый преобразователь исполнительными механизмами, которые осуществляют два вида подналадочных перемещений грубое — шлифовальной бабкой и точное — управляемым опорным ножом.  [c.466]

При электрификации рабочих процессов, выполняемых машинами и станками, наряду с электродвигателем требуется ещ е специальное устройство для передачи движения от двигателя к исполнительным органам машин, а также специальная аппаратура управления. Эти элементы вместе взятые — электрический двигатель, передаточное устройство и система управления — заняли в электротехнике совершенно самостоятельное место и получили название электропривода. Электрический привод в настояш ее время является господствующим среди других видов привода (парового, гидравлического, пневматического).  [c.109]


Система программно-путевого управления станком основана на применении регулируемых или передвижных упоров, воздействующих на конечные переключатели и ограничивающих перемещение исполнительных узлов станка. Последовательность этих перемещений, равно как и изменение скоростей и подач, обеспечивается пультом управления с помощью переключателей, штек-керов и т. д. Эта система находит применение в револьверных, гидрокопировальных и других станках, исполнительные органы которых в,процессе обработки совершают ряд последовательных перемещений с различной длиной хода.  [c.132]

Исполнительное устройство служит для обработки полученной. команды и состоит из исполнительных элементов системы и рабочих органов станка. Исполнительными элементами являются электрический, гидравлический или иной привод рабочих органов станка, муфты, электромагниты, гидрозолотники и т. п.  [c.211]

Конструкция цилиндра предусма-, тривает его закрепление на заднем конце шпинделя токарпо-винторезиых или револьверных станков. Исполнительные размеры цилиндра определяются в зависимости от потребного зажимающего усилия.  [c.156]

Исполнительными механизмами называются те механизмы, кото ,ые непосредственно воздействуют на обрабатываемую среду или объект. В их задачу входит изменение формы, состояния, положения и свойств обрабатываемых среды или объекта. К исполнительным механизмам, например, относятся механизмы прессов, деформирующих обрабатываемый объект, механизмы грохотав в энергозерноочистительных машинах, разделяющих среду, состоящую из зерна и соломы, механизмы металлообрабатывающих станков, изменяющие форму заготовки снятием стружки до той формы, которая требуется ио технологическим условиям, механизм , проката слитков в блюмингах и т, д.  [c.16]

Рассмотрим схему автоматической систел ы программного управления станков типа токарных или револьверных (рис. 28.10). Иа этой схеме каждглй из электродвигателей W является приводом соответствующего исполнительного механизма станка. Блок программы представляет собой устройство, протягивающее магнитную лепту 5 последовательно мимо двух магнитных головок 3 и 4. Для управления каждым из электродвигателей 10 установлен магнитный пускатель 9 и кнопка /. При нажиме кнопки 1 одновременно включается двигатель 10 и соответствующий генератор 2, генерирующий электрические колебания определенной частоты.  [c.587]

Все размеры, кроме одного установочного, являются исполнительными. Одни исполнительные размеры служат для изготовления деталей пресс-формы (матрщы и пуансона) путем обычной механической обработки на станке, другие— для сверления поперечного отверстия после изготовления армированного изделия.  [c.262]

Схема управления с электрическими ЛЭ показана на рис. 5.41. В качестве исполнительных механизмов взяты гидроцилиндры. По срапненню со схемой станка, изображенного на рис. 5. 38, гидроцн-линдр ИМ2 повернут на 90° и все схемы ИМ смещены вверх.  [c.198]

Одной из наиболее простых систем является система управления прямоугольным циклом, использованная для фрезерных станков общего назначения моделей 6Л12П и 6Л82Г. При этой системе обработка осуществляется в процессе относительных перемещений инструмента и обрабатываемой детали эти перемещения происходят в прямоугольных координатах по заданной последовательности, причем в каждый момент обработка идет только по одной координате. Варианты прямоугольных циклов, определяемые последовательностью движений исполнительных органов, могут быть различны в зависимости от профиля обрабатываемой поверхности. Таким образом, можно обрабатывать на фрезерных станках разнообразные фасонные поверхности.  [c.288]

На уровне 1-го ранга СПУ формируется информация с помощью соответствующих преобразователей о положении исполнительных opianoH, о состоянии системы механизмов и параметрах возмущений, действующих в системе, о правильном ходе рабочих процессов и возникающих неполадках и способах их устранения. Паиример, па металлорежущих станках по информационным каналам l-1 о ранга передается информация датчика обратной связи о положении ис11о. нительных органов датчиков, измеряющих температурные и силовые деформации, силовые параметры процесса резания, текущий износ инструмента, колебания в системе станок приспособление инструмент заготовка, колебания припуска на за отовке, колебания твердости материала.  [c.478]

Высшим органом ИСО является Генеральная Ассамблея, которая собирается раз в 3 года, принимает решения по наиболее важным вопросам и избирает Президента организации. В ИСО имеются Исполнительный Комитет (ИСО/Исполком), Комитет по изучению научных принципов стандартизации (ИСО/СТАКО), Комитет помощи развивающимся странам (ИСО/ДЕВКО), Аттестационный Комитет (ИСО/СЕРТИКО) и свыше 150 технических комитетов, которые разрабатывают рекомендации и стандарты (ТК-1 Резьбы , ТК-2 Болты, гайки и детали крепления ТК-3 Допуски и посадки , ТК-29 Инструменты , ТК-39 Станки и др.).  [c.38]

Силы Р с и пары сил М. , полезных сопротивлений возникают при реализации производственных процессов. К таким силам относят силы тяжести грузов при подъеме их грузо-подъемными устройствами — кранами, манипуляторами, подъемниками и т. п., силы сопротивления размелъчепию материалов в мельницах и дробилках и др. Силы полезных сопротивлений обычно действуют на выходные исполнительные звенья машин. Так, например, при строгании металла на строгальных станках сила резания прилагается к кромке резца.  [c.78]

При ЧПУ программа рассчитывается и задается в форме дискретных закодированных сигналов. Система управления, получая информацию, немедленно дает команды исполнительным механизмам станка в виде электрических импульсов, преобразуемых и усиливаемых с помощью сервомеханизмов и определяющих поступательные или вращательные движения рабочего органа или вокруг одной из трех осей координат.  [c.11]

Следящий привод. Принцип действия следящего привода поясним на примере гидрокоиировального устройства фрезерного станка (рис. 129,6). Фреза 4 соединена с корпусом гидроцилиндра, а щуп 2 — со штоком гидрозолотника. Гидроцилиндр называется исполнительной частью, а гндрозолотник — управляю-Н1, е й (иногда — задающей). Обе части вместе с насосом 5 установлены на общем столе 6, который вместе с ползуном 1 может перемещаться в направлении задающей подачи з.,. При этом перемещении щун 2 получает следящую подачу 5е, зависящую от профиля копира 3, а фреза 4 вместе со столом 6 повторяет движение щупа,, следит за его движением (отсюда название — следящий привод).  [c.238]

В манипуляторах с автоматическим управлением звенья исполнительного механизма получают движения от сервоприводов, работающих по заданной программе подобно станкам с програм-ным управлением. Управляющий механизм служит в этом случае только для выработки программы работы исполнительного механизма. Все действия оператора, связанные с перемещением звеньев управляющего механизма, преобразуются посредством датчиков перемещений в электрические или механические сигналы и записываются на магнитную ленту или перфоленту. Полученная программа может многократно использоваться для управления манипуляторо.м. Манипуляторы с автоматическим управлением могут использоваться не только для работы во вредных условиях, но и для механизации однообразных и утомительных операций при обработке и сборке изделий. В этих случаях манипуляторы с автоматическим управ-, лением называют промышленными роботами (см. 32).  [c.263]



Смотреть страницы где упоминается термин Станки исполнительные : [c.276]    [c.331]    [c.33]    [c.192]    [c.284]    [c.202]    [c.205]    [c.205]    [c.487]    [c.351]   
Металловедение и технология металлов (1988) -- [ c.425 ]



ПОИСК



Измерительные устройства и исполнительные механизмы станков с числовым программным управлением

Исполнительные движения станка

Исполнительные механизмы систем управления станков

Исполнительный

Приводы исполнительных органов, элементы и узлы станков при программном управлении. Системы обратной связи

Система координат и направления движений исполнительных органов станков с ЧПУ

Способы перемещения исполнительных органов в станках с ЧПУ



© 2025 Mash-xxl.info Реклама на сайте