Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы гранит

В дополнение к табл. 15 приведём данные Ренни материалов гранит по граниту — 0,30 песчаник по песчанику — 0,37 шерстяная ткань по шерстяной ткани — 0,44 сталь по льду — 0,014, лёд по льду —0,028.  [c.142]

Окружающий нас мир содержит множество различных типов твердых тел. Сюда относятся и биологические вещества (дезоксирибонуклеиновая кислота и ферменты), и геологические материалы (гранит и слюда), тысячи металлических сплавов и миллионы органических соединений. Все эти материалы построены из атомов менее ста химических элементов. Однако физика твердого тела к настоящему времени достаточно основательно и глубоко изучила главным образом только монокристаллы элементов и простых соединений. Исследования, проведенные на монокристаллах, всегда намного более ценны и несут в себе намного большую информацию, чем исследования, проведенные на поликристаллических образцах. Огромное и все возрастающее практическое значение имеют, однако, и аморфные материалы.  [c.111]


Применение новых технических систем, материалов и технологий позволит в 5—10 раз повысить производительность труда. Их внедрение способствует постепенному стиранию граней между умственным и физическим трудом, возрастанию доли творческих функций в производственной деятельности.  [c.10]

Коррозия — разрушение металлов в результате химической или электрохимической реакции. Разрушение (порча), происходящее по физическим причинам, не называется коррозией и известно как эрозия, истирание или износ. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионной эрозией, коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы. Пластмассы могут набухать или трескаться, дерево — расслаиваться или гнить, гранит может крошиться, а портландцемент — выщелачиваться, но термин коррозия относится только к химическому воздействию на металлы.  [c.16]

Включения, как и дендриты,образуются только при кристаллизации. В процессе роста кристалла на его гранях могут образовываться включения маточного раствора, в котором растет кристалл, либо механических примесей, содержащихся в кристаллизующейся среде. Внутри кристалла включения располагаются не произвольно, а по определенным правилам. Газовые пузырьки при захвате их кристаллом вытягиваются, образуя тонкие каналы, расположенные перпендикулярно к фронту кристаллизации. Так же располагаются и пузырьки маточного раствора. В качестве механических включений внутрь кристалла могут попадать и кристаллы другого вещества, чаще всего более тугоплавкого, че.м вещество основного кристалла [21]. Однако следует отметить, что изучены лишь некоторые виды включений газовые, жидкие, твердые, газово-жидкие, трехфазные, причины и механизм их образования, в то время как их влияние на свойства материалов можно считать неисследованным.  [c.51]

Колоссальность запасов тория и урана обусловлена тем, что они содержатся не только в специальных рудах, но и в таких повсеместно распространенных материалах, как гранит. В каждой тонне гранита в среднем содержится 3 г урана и 12 г тория. Даже при потреблении энергии 5-10 МВт (на два порядка выше, чем сейчас) энергетических запасов урана и тория в граните хватит более чем на 10 лет. Таким образом, создание реакторов-размножителей является не просто очередным техническим достижением, но и решением проблемы снабжения человечества энергией на много геологических эпох вперед. Перспективная стоимость переработки одной тонны гранита оценивается примерно в два рубля. Для верхней границы стоимость 1 кВт-ч энергии получается 0,2 коп. — цифра, сравнимая со стоимостью электроэнергии на существующих угольных электростанциях.  [c.597]


Рассмотрим результаты некоторых методов решения уравнения трехмерной стационарной теплопроводности в изотропном материале без источников теплоты (2.56). На рис. 6.7 представлено температурное поле (распределение температуры в узлах сетки) в кубе. Все грани куба имеют постоянную температуру, причем одна 100°С, а пять других 0°С шаг сетки а/4, где а —длина ребра куба. Ввиду симметрии температурного поля результаты расчета представлены для V4 куба. В работе [97] температуры в указанных на рис. 6.7 узлах найдены методом релаксации по формуле  [c.91]

Эта гипотеза дает возможность рассматривать вещество тела как непрерывную среду, пренебрегая его молекулярным строением, а также существованием пустот и неметаллических включений по граням сочленений кристаллических зерен. Принятие ее позволяет применять в сопротивлении материалов аппарат непрерывных функций математического анализа.  [c.9]

Под твердым телом понимается заполненная материалом замкнутая область пространства. Твердое тело характеризуется многогранным представлением и историей своего создания. Многогранное представление тела отображается в виде прозрачного или непрозрачного объема, границы которого состоят из совокупности линий ребер и поверхностей граней.  [c.18]

В твердых телах для продольных и поперечных волн коэффициенты затухания различны. Большинство твердых тел состоит из большого числа зерен-кристаллитов, на границах которых происходит рассеяние ультразвуковых волн. Вследствие этого роль рассеяния оказывается значительной и часто превалирующей. Особенно велико рассеяние в материалах, состоящих из разнородных частиц (бетон, гранит, чугун).  [c.192]

Анализ напряжений. В целях выбора геометрических размеров образца проведен анализ распределения в нем напряжений с учетом рассмотренных схем нагружения. При решении задачи для первой схемы нагружения напряженное состояние принимали плоским (Oj = Туг = т-сг = = 0). Такое допущение не вносит большой погрешности в изменение картины распределения напряжений, так как современные композиционные материалы имеют относительно малую толщину (1—5 мм), а ширина образца в несколько раз превышает его толщину. Схема нагружения образца и расположение системы координат, принятые при решении задачи показаны на рис. 2.10. Краевые условия соответствовали воспрещению перемещений по торцовым граням образца. С учетом принятых допущений выражения для максимального и минимального значений осевого напряжения на торцах образца при х = 0, X = I имеют следующий вид  [c.35]

Площади оснований параллелепипедов (см. рнс. 5.2, заштрихованы) соответственно равны коэффициентам армирования материала р1, рг. з > длины их образующих приняты равными единице. Размеры сторон прямоугольных оснований соответственно равны коэффициентам армирования тонких слоев материала, включающих волокна одного из направлений. Таким образом, геометрические размеры параллелепипедов (основания параллелепипедов на рис. 5.2 обозначены цифрой 1) связаны с объемными коэффициентами армирования материала р геометрией размещения волокон. Параллелепипеды, основания которых на каждой грани модели материала помечены цифрами 2—9, соответствуют суммарному содержанию связующего в материале, а также арматуры, уложенной параллельно грани куба.  [c.130]

Контактное взаимодействие стрингера с жестко защемленной полосой. Пусть бесконечная полоса толщины Н по одной своей грани усилена бесконечным стрингером малой толщины /г, а по другой грани жестко защемлена. Как и выше, считается, что материалы стрингера и полосы обладают свойством ползучести, которое характеризуется неоднородностью процесса старения. Обо-  [c.141]

Качественная оценка химической стойкости распространяется также на неорганические материалы и основывается на данных по скорости разрушения материала, мм/год, или скорости коррозии, г/(м .ч) (табл. 6). Предлагается также использовать данные по снижению прочности материалов за год. Следует отметить, что многие неорганические материалы, особенно строительные, имеют разную пористость и неоднородны по структуре, что затрудняет проведение количественных оценок. Плотные материалы (изверженные каменные породы гранит, диабаз и т. д.) подвергаются химическому действию среды только с внешней стороны. Пористые материалы (бетоны, известняки) подвергаются воздействию агрессивной среды (газы, жидкости) не только снаружи, но и изнутри и поэтому сильнее подвержены разрушениям.  [c.9]


При использовании композиционных материалов необходим новый подход к проектированию самолета. При этом стирается грань различия между конструктором и материаловедом. Конструктор может использовать анизотропию композиционных материалов. Он добивается оптимальных результатов при разработке конкретного узла или агрегата варьированием ориентации волокон и, таким образом, проектирует материал так же, как и конструкцию. Ранее проведенные исследования [12] уже показали такие возможности. Как отмечалось в этой работе, конструктор должен определить не только внешнюю, но также и внутреннюю геометрию узла или агрегата. Этот процесс сопровождается рядом этапов, на протяжении которых материалы и конструкция рассматриваются как непрерывно взаимосвязанные, что отличает его от традиционных методов, используемых для металлов.  [c.57]

Фирма Циллер (Германия) производит уплотнение упругами стальными шайбами (рис. 11.23), которые применяют при скорости скольжения до 6 м/с и смазывании подшипников любым смазочным материалом. Толщина шайб в зависимости от их диаметрального размера еоставляет а = 0,3...0,6 мм. Торцовая рабочая грань шайб выступает за их плоскость на с = 0,5...0,6 мм, что создает после закрепления шайб достаточную силу прижатия рабочей грани к торцу кольца подшипника. Размеры шайб см. в табл. 24.25.  [c.184]

Кислотоупорный цемент. Кислотоупорный цемент изготовляется путем смешения двух порошкообразных компонентов — наполнителя и ускорителя твердения, затворяемых затем на водном растворе силиката натрия (жидкого стекла). В качестве наполнителей используют измельченные богатые кремнеземом естественные породы (андезит, гранит, кварцевый песок) или искусственные силикатные материалы (плав.ченый диабаз, плавленый базальт, фарфор и др.). Силикатные кислотоупорные цементы обозначают по роду наполнителя — андезитовый, диабазовый цемент и т. п. В качестве ускорителя твердения применяют кремнефтористый натрий. Для приготовления цемента берут разные количества жидкого стекла различной плотности. После смешения компонентов полученные композиции обладают вначале высокой подвижностью, но очень быстро начинают схваты-  [c.456]

Сопротивление горных вород воздействию коррозионных сред определяется их составом. Материалы, содержащие более 55%Si 0г, относятся к кислотоупорным (андезит, базальт, диабаз, гранит, кварц). Породы,содержащие окислы и карбонаты металлов, главным образом ще- лотаых, отличаются щелочестойкостью (известняки, доломиты, мрамо-р - ). Характеристики важнейших горных пород как конструкционных матерке лов приведены в табл, 10,  [c.39]

Разверткой поверхности многогранника называют плоскую фигуру, полученггую при совмещении с плоскостью всех его граней. Развертывание гранных поверхностей выполняют для проведения раскроя листового материала при изготовлении деталей или определения площади поверхности деталей, покрываемых различными материалами. Определение площади важно при различных покрытиях, выполняемых как с декоративными це-  [c.83]

В разделах 4.1 -4.2 приводится анализ многочисленных фактов, при помощи которого стирается четкая грань мезвду кристаллическими и аморфными материапалш. Показано, что, с точки зрения структуры, более правильным бьшо бы описывать любой материал такой характериспжой, как "степень кристаллич-иосги", поскольку реальные материалы в большинстве с воем содержат в той или иной пропорции как упорядоченные области, так и области, в которых заметная упорядоченность отсутствует.  [c.7]

Предел прочности при сжатии для хрупких материалов значительно больше, чем при растяжении. Так, например, серый чугун (марки от СЧ12-28 до СЧ38-60) при сжатии имеет Опчс = 490 -ь 1400 н/i ж а при растяжении = 118 ч- 373 н мм гранит при сжатии Опчс = 120 -н 260 н мм , а при растяжении = 4-4-8 н/мм .  [c.202]

Чувствительность весов зависит еще от одного обстоятельства, которого мы не учитывали, а именно от сил сухого трения в точке подвеса ( 51). Силы сухого трения вызовут появление застоя у весов, так же как во всяком измерительном приборе. Поэтому только в грубых рычажных весах коромысло надевается на ось, вокруг которой оно может вращаться. И точных же весах коромысло опирается на острую грань призмы, сделанной из возможно более пвердых материалов (специальных сортов стали, агата и т. и.). При достаточно острой и твердой грани призмы явление застоя практически не nrpaei роли.  [c.417]

Когда мы говорили об упругих свойствах материала, мы полагали, что свойства эти одинаковы по всем направлениям и упругие константы материала для всех направлений одни и те же. Многие материалы, применяемые на практике, действительно обладают такими свойствам , однако далеко не все. В частности, отдельные кристаллы обычно обладают различными упругими свойствами в разных направлениях. Например, куб, вырезанный из кристалла, под действием одной итой же силы, приложенной к различным его граням, вообще говоря, испытывает различные деформации.  [c.475]

Большинство кристаллических материалов в действительности ЯВ.ЛЯЮТСЯ поликристаллическими, для которых характерно не строго периодическое расположение частиц, однако имеются небольшие области, внутри которых они расположены периодично. Такие пространственные области называются зернами. Следовательно, каждре зерно представляет собой кристалл, однако на гранях зерен ориентация кристал.лической структуры меняется. Обычный кусок металла — это поликристалл, размеры зерен которого составляют, как правило, доли миллиметра.  [c.11]

Дадим оценку результатам, полученным при решении такой же задачи методами сопротивления материалов. С точки зрекия сопротивления материалов, на подпорную стенку в сечении у действуют две силы (рис. 21) равнодействующая гидростатического давления на вертикальную грань Р , вызывающая изгиб, и равнодействующая от собственного веса стенки Р , приложенная  [c.75]


Это означает, что верхняя граница разреза на рис. 234 перемещается вниз на величину 2л (1 +v) аС в пространство, занимаемое нижней гранью и находящимся под ней материалом. Физически это, разумеется, невозможно, и этому препятствуют действующие между гранями усилия, достаточные для создания противодействующего перемещения. Напряженное состояние, вызнлваемое этими противодействующими перемещениями, определяется так, как это описз1ю в конце 43, но теперь уже, конечно, для случая плоской деформации.  [c.478]

Если из тела выделить весьма малый параллелепипед, то по граням этого элемента в общем случае будут действовать нормальные и касательные напряжения. Правило знаков для этих напряжений в сопротивлении материалов принимается следующим положительные нормаг[ьные  [c.23]

Базовые элементы для контактных теплообменных аппаратов. При обработке продуктов контактным способом высокие тепловые нагрузки (свыше 10 кВт/м ) встречаются редко, поэтому тепломассомеры с одиночными базовыми элементами применять нецелесообразно из-за малой чувствительности. Вместе с тем термическое сопротивление продукта всегда достаточно велико, чтобы использовать батарейные базовые элементы. Чувствительность галетных тепломассомеров зачастую недостаточна, поскольку при обработке и в особенности при хранении продуктов нагрузки могут составлять сотни, десятки и даже доли ватт на 1 м . Надежные измерения таких малых нагрузок обеспечиваются применением принципа коммутации дифференциальных термоэлементов из термоэлектродной проволоки, местами покрытой другим термоэлектродным материалом так, что переходы от покрытых к непокрытым участкам ( спаи ) располагаются поочередно на гранях батареи элементов [7—9]. Нанесение парного термоэлектродного материала производится гальваническим методом, поэтому работа термоэлементов батареи подчиняется закономерностям, полученным при исследовании гальванических термопар 17, 8].  [c.59]

Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]

Такую батарею можно изготовить с использованием технологии решетчатого тепломассомера, когда спаи дифференциальных термоэлементов на гранях датчика создаются поочередным покрытием полувитков термоэлектродной проволоки контрастным термоэлектродным материалом (рис. 3.13), например константана — медью (зачерненный полувиток /). Меднение для добавочной секции надо наносить на обоих полувитках поровну, тогда в стационарном режиме получим от нее нулевой сигнал, но на разной высоте (// и III). При внезапном изменении q на одной стороне датчика будут сначала вырабатывать сигнал полувитки, покрытие которых ближе к месту возмущения, за этот счет и производится увеличение основной секции. Температуру на противоположной стороне датчика для простоты анализа можно считать постоянной, (такие условия работы датчика часто реализуются при тепломассо-метрии различных процессов).  [c.81]

На грани элементарного параллелепипеда, вырезанного около точки О, действуют три нормальные составляющие напряжений о , Оу, Ог и шесть касательных составляющих х у, Xxz, Xyz, Хух, Хгх, Xzy. В соответствии с законом парности касательных напряжений, доказательство которого приводится в курсах сопротивления материалов, касательные на-пряя енпя с одинаковыми индексами, действующие па двух взаимно перпендикулярных площадках, равны друг другу по величине, т. е.  [c.14]

Г орные породы Гранит, андезит. базальт, диабаз, кварц Большинство кислот и других соединений Плавиковая кислота, горячая ортофос-форная кислота, шелочи Конструкционные, кладочные материалы, наполнители  [c.21]

Прибор УС-12ИМ предназначен для измерения скорости распространения и коэффициента затухания продольных ультразвуковых волн в изделиях с плоскопараллельными гранями. Прибор позволяет измерять отношение амплитуд ультразвуковых импульсов, проводить амплитудный анализ упругих колебаний и, таким образом, оценивать физико-механические свойства материалов.  [c.281]

Технологические методы обеспечения надежности включаш стандарты, отражающие широкий круг вопросов, связанных с получением у материалов, заготовок и изделий требуемых свойств. Сюда относятся, например, стандарты на химико-термическую обработку, антикоррозионные покрытия, на точность сборки и т. п. Здесь часто трудно провести грань между качеством и надежностью.  [c.424]

Четырехнаправленные композиционные материалы 40. Симметрия упругих свойств материалов 40. На рис. 6.16 показана принципиальная схема пространственного расположения волокон по отношению к граням куба материала 40, армированного параллельно диагоналям куба. Введены три системы координат первая — главная — с осями 123, перпендику-  [c.189]

Для определения твердости тугоплавких материалов при высоких температурах использовался метод статического вдавливания индентора в виде правильной четырехгранной пирамиды с углом 136° между противоположными гранями при температурах 300—2300 К и метод одностороннего сплюш,ивания конических образцов с углом 120° при вершине, который оказался удобным для еще более высоких температур (до 3300 К).  [c.29]

Глубокую оценку значения электрической энергии д.чя технологии дал выдающийся советский электроэнергетик Г. М. Кржижановский еще в период разработки плана ГОЭЛРО. Он подчеркнул, что на грани физических и механических процессов электротехника не останавливается. Практическая электрохимия и электрометаллургия родились каких-нибудь 20 лет тому назад. Ныне это уже громадные научные области, уже двигатели и носители революционных переворотов в области нужных для че.ловечества превращений вещества [19]. И действительно, благодаря введению электротехнологии в настоящее время удается получить в массовом масштабе весьма редкие в прошлом элементы, новые сочетания их в виде специальных сплавов и многие синтетические материалы.  [c.117]

При деформации рассматриваемого здесь вида плотность энергии деформации W для упругих материалов также является функцией параметров k и Я. Связь между функциями S, S3 и W находится подсчетом работы, затрачиваемой на деформацию единичного куба, соответствующую удлинению dX и сдвигу dk. При такой деформации сумма работ поверхностных усилий, распределенных по противолежащим граням, равна нулю, за исключением работы нормальных напряжений S3 на поверхностях 2 = onst и касательных напряжений 5 на поверхностях у =  [c.332]


Дальнейшее усовершенствование было сделано после первой мировой войны, когда для изоляционных мастик начали использовать нефтяной битум, к которому добавляли сланцевую муку, известковую муку или молотый гранит. При переходе от дегтя к битумам, физические свойства которых улучшали продувкой (окислением),,удалось получать плотные битумные слои и на внутренней поверхности водопроводных труб методом центрифугирования. Ввиду склонности джута к гниению и насыщению влагой в конце 1920-х гг. его заменили пропитанными шерстяными войлочными матами. Однако высказанный в свое время в журнале Газ — унд вассерфах прогноз, что такая наружная защита позволит полностью предотвратить коррозию труб, оказался слишком оптимистичным. Для повышения механической прочности покрытий трубные заводы примерно с 1953 г. перешли от шерстяных войлочных матов как армирующего материала для битумных покрытий к стекловолокнистым материалам [13].  [c.29]

Материалы, форма и размеры образцов. Эксперименты проводили на образцах из хромель-копели и стали 45. В качестве материалов контртела применяли сталь 45 и гранит. Теплофизические свойства испытанных материалов приведены в табл. 10.  [c.131]

В УЗ дефектоскопии в качестве источников и приемников ультразвука используют материалы, обладающие пьезоэлектрическим эффектом, который заключается в появлении электрического заряда на гранях кристалла материала при приложении механического напряжения (прямой пьезоэффект). При воздействии механических колебаний на пластину из пьезоматериала (пьезопластину) между ее поверхностями возникает переменная электродвижущая сила. Существует и обратный пьезоэффект, заключающийся в деформации (изменении размеров) пластины под действием электрического поля. Характер деформации определяется полярностью приложенного напряжения если напряжение переменное, то размеры пластины изменйются с частотой приложенного поля. Таким образом, с помощью пьезопластины можно преобразовывать УЗ колебания в электрические и наоборот. Впервые пьезоэлектрические свойства были обнаружены у горного хрусталя — одной из разновидностей кварца.  [c.23]

На рис. 63 и 64 приведены результаты исследования микро-электрохимической гетерогенности шлифа из отожженного армко-железа электроннолучевого переплава. При измерениях микроэлектрод последовательно перемещали по прямой линии с шагом 0,05 мм. Сплошные кривые на обоих рисунках характеризуют распределение потенциалов, полученных усреднением в пределах зерен, границы и потемнение которых обозначены на оси абсцисс. Максимальная величина Аф достигает 25 мВ и примерно в два раза превышает значение Дф, измеренное на образцах обычной выплавки (рис. 65). Следовательно, кристаллографическая ориентация граней зерен проявляется в микроэлектрохимиче-ской гетерогенности сильнее в случае более чистых материалов.  [c.175]


Смотреть страницы где упоминается термин Материалы гранит : [c.391]    [c.112]    [c.299]    [c.124]    [c.155]    [c.207]    [c.366]    [c.177]   
Теория механизмов и детали точных приборов (1987) -- [ c.134 ]



ПОИСК



Гранит



© 2025 Mash-xxl.info Реклама на сайте