Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вектор Бельтрами

В прямых решениях задач об упругих телах ищутся тензоры напряжений, деформаций и вектор перемещения, вызываемые действующими на них внешними силами. Для этого следует проинтегрировать дифференциальные уравнения Ляме (5.4), если за основные неизвестные приняты перемещения Uk, и дифференциальные уравнения (5.26) и соотношения Бельтрами — Митчелла (5.33), (5.34), если за основные неизвестные приняты компоненты тензора напряжений при заданных граничных и начальных условиях. В первом случае говорят, что задача решается в перемещениях, во втором — в напряжениях.  [c.89]


И. С. Громеке принадлежит глубокое исследование одного специального класса вихревых движений — так называемых винтовых движений, в которых совпадают направления векторов скорости и вихря. Этот класс движений, рассматривавшийся позже также Э. Бельтрами, замечателен тем, что  [c.75]

Обращаясь к уравнению Навье — Стокса, мы видим, что предположение (75.1) эквивалентно предположению о потенциальности вектора ускорения. Условие (75,1) удовлетворяется, в частности, для плоских слоистых течений, течений Пуазейля и Куэтта, установившегося течения Бельтрами и вообще для любого течения, в котором можно пренебречь инерционными членами. В этот класс входят течения весьма частного вида, но тот факт что исследования носят законченный и строгий характер, имеет большое значение.  [c.243]

В линейной теории упругости, напомним, распространен вариант полуобратного метода, в котором исходным этапом служит задание статически возможного, иначе говоря, удовлетворяющего уравнениям статики в объеме и на поверхности, напряженного состояния. Далее проверяется, что это состояние согласуется с уравнениями Бельтрами — Мичелла этим гарантируется, что линейный тензор деформации, вычисляемый по принятому тензору напряжений, допускает определение вектора перемещения и. Перенесение этого приема в нелинейную теорию затруднено тем, что обращение уравнения состояния — разыскание меры деформации по тензору напряжений из нелинейного уравнения состояния практически неосуществимо (И, 8) и неоднозначно. Аналог уравнений Бельтрами —Мичелла в нелинейной теории может быть использован лишь в исключительных случаях ( 17). Поэтому вторым вариантом полуобратного метода здесь может служить исходное задание меры деформации, удовлетворяющее условиям обращения в нуль тензора Риччи (П1.10.21). По этой мере и по уравнению состояния составляется тензор напряжений. Он должен быть статически возможным его дивергенция должна быть нулем, если не учитываются массовые силы, а по его произведению на вектор нормали определяются поверхностные силы. Конечно, нет оснований ожидать, что такая процедура не потребует при выполнении уравнений статики в объеме конкретизации задания коэффициентов определяющего уравнения, как функций инвариантов меры деформаций (скажем, коэффициентов фг(/1, 2, /з) в (4.3.4)). Значит и формы представления поверхностных сил зависят от выражений этих коэффициентов, иначе говоря, их нельзя представить в единой записи, независящей от того, какой принят закон зависимости удельной потенциальной энергии э(/,, /2, /3) от ее аргументов.  [c.135]


Это—аналог уравнения совместности напряжений линейной теории-уравнений Бельтрами —Мичелла. Известно, что принцип минимума дополнительной работы в этой теории выделяет из множества статически возможных напряженных состояний реализуемое состояние, допускающее определение вектора перемещения. Естественно ожидать, что принципу стационарности дополнительной работы в нелинейной теории отводится та же роль ).  [c.143]

В такой нормировке его называют вектором Бельтрами [Drits hel, 1991]. С помощью вектора В условие винтовой симметрии можно представить в виде  [c.55]

В рамках модели течеиий идеальной несжимаемой жидкости с винтовой симметрией рассмотрим винтовое движение, в котором поля скорости и завихренности коллинеарны. Поля скорости и завихренности таких течений в силу их соленоидальности можно с помощью вектора Бельтрами В представить в виде разложений [Landman, 1990 Drits hel, 1991]  [c.59]

Безопасного срока эксплуатации расчет 298 Безопасности коэффициент 153, 154 Безопасных повреждений расчет 167, 298 Бельтрами гипотеза см. Полной удельной энергии деформации гипотеза разрушения Браве классификация пространственных решеток 27, 28 Бринелирование 15, 17 Бюргерса вектор 52, 54, 56  [c.615]

Задача (й, р) в упругой постановке изучалась в [13], где исследовались вопросы корректности и методы решения, связь с задачей аналитического продолжения и с задачей тензометрии. Показано, что эта задача относится к условно корректным и может быть сведена к задаче Коши для бигармонического уравнения (в плоском случае) или для уравнений Ламе, либо для системы Бельтрами-Митчела (в пространственном случае). В [14-17] использовалось представление общего решения теории упругости через голоморфный вектор, удовлетворяющий системе уравнений Моисила-Теодореску это позволило свести задачу (w, р) к задаче продолжения голоморфного вектора, которая, в свою очередь, приведена к интегральному уравнению, численное решение которого строилось без процедур регуляризации, что обосновано сопоставлением с точным решением тестовой задачи. В [12, 18] рассматривалась идеально упругопластическая задача (w, р), где также исследовались вопросы корректности, построения алгоритмов решения и их численной реализации на конкретных примерах (нахождение пластических зон вокруг эллиптических и круговых отверстий при полном и неполном охвате  [c.778]

Из этого уравнения в теории упругости получают (путем подстановки выражения через компоненты тензора напряжений) так называемые уравнения Бельтрами, которым должны удовлетворять компоненты тензора напряжений. Это связано с тем, что уравнения движения упругого тела формулируются, в конечном счете, относительно вектора смепдения и, компоненты которого могут быть выражены через U , только при выполнении условий совместности.  [c.81]

Существенное внимание уделяется общим методам решения проблем теории упругости. При рассмотрении дифференциальных уравнений Навье в перемещениях вводятся векторный и скалярный потенциалы, потенциал Ламе, вектор Буссинеска, вектор Папковича. Анализируя дифференциальные уравнения в напряжениях Бельтрами — Мичелла, автор вводит функции напряжений Максвелла и Мореры. Подробно показано применение обратного и полуобратного методов Сен-Венана.  [c.6]

Исследовано установившееся осесимметричное винтовое течение несжимаемой идеальной жидкости в полубесконечном цилиндре, обусловленное наличием в его дне круглого отверстия. В отличие от аналогичной задачи H.A. Слезкина на бесконечном удалении от дна поддерживаются постоянными осевая и угловая компоненты скорости квазитвердого вращения, а течение, индуцированное отверстием, однородно-винтовое по Жуковскому (вектор-вихрь абсолютного движения коллинеарен относительной скорости). Во вращающейся вместе с жидкостью системе координат это течение представлено в виде суперпозиции прямолинейно-поступательного потока в направлении дна и однородно-винтового течения Громеки - Бельтрами. Для решения задачи использовано понятие обобщенной функции тока. В качестве предельных случаев рассмотрены винтовой сток в дне полубесконечного цилиндра и винтовое истечение жидкости из полупространства через круговое отверстие на границе. Проведено сравнение с потенциальным течением.  [c.90]



Смотреть страницы где упоминается термин Вектор Бельтрами : [c.500]    [c.105]    [c.159]    [c.160]    [c.9]    [c.104]   
Введение в теорию концентрированных вихрей (2003) -- [ c.55 ]



ПОИСК



Бельтрами



© 2025 Mash-xxl.info Реклама на сайте