Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура энергетическая

Отсюда видно, что ПЭ зависит от электрического поля так же, как ТЭ зависит от температуры ln(j/S2) = = f(l/ ё) (рис. 25.47). При высоких температурах плотность тока ПЭ возрастает с Т, особенно сильно в области малых (но уже вызывающих ПЭ) электрических полей. Распределение по энергиям электронов, эмитируемых из металла, при ПЭ при низких температурах эмиттера начинается от энергии, соответствующей уровню Ферми в металле (принимаемому за нуль), и простирается в область отрицательных энергий. Ширина распределения на половине высоты составляет около 0,5 эБ (рис. 25.48). При возрастании температуры энергетический спектр эмитируемых электронов расширяется в сторону положительных энергий. ПЭ полупроводников обладает рядом особенностей, связанных с распределением электронов по энергиям в них, с проникновением внешнего электрического поля в полупроводник и с сильной термо- и фоточувствительностью полупроводников, оказывающей влияние на ток ПЭ (рис. 25.49) [28, 29]. Токи ПЭ с большой плотностью удается получать с эмиттеров, имеющих форму острия. Предельная плотность тока, еще не разрушающего острие, /кр возрастает с увеличением угла при вершине эмитирующего конуса, так как с увеличением этого угла улучшается отвод теплоты от острия (табл. 25.27, рис. 25.50). В очень сильных электрических полях, когда плотность тока ПЭ достигает 10 —10 А/см локальные участки катода, из которых происходит эмиссия, (острия) в результате сильного разогрева взрываются, образуя плотную плазму, расширяющуюся со скоростью t = 10 см/с. Этот процесс сопровождается возникновением интенсивной эмиссии (взрывная электронная эмиссия, рис. 25.51) [30]. Ток /, А, взрывной электронной эмиссии при взрыве одиночного острия  [c.588]


Если пайка ведется при эвтектической температуре, то состав образующейся жидкости точно соответствует эвтектике. При более высоких температурах энергетически более выгодным становится образование жидкости, соответствующей по составу точке пересечения линии ликвидус равновесной диаграммы состояния с изотермой температуры пайки.  [c.149]

При очень высоких температурах распределение частиц по уровням энергии почти одинаково (если = gj = ), а внешнее излучение недостаточно для заметного нарушения равновесия. В этих условиях мало как поглощение внешних потоков, так и люминесценция. При Т 00 вероятности неоптических переходов вниз равны вероятностям обратных переходов, превращение световой энергии в тепло полностью компенсируется обратным процессом. Как следствие, тушение люминесценции отсутствует, и при сильном повышении температуры энергетический выход увеличивается, а в пределе при Т — оо приближается к единице.  [c.28]

Температура термообработки 600° С взята как близкая рабочая температура энергетических установок.  [c.16]

Более низкая температура, чем в предыдущих экспериментах, взята потому, что 600° С ближе подходит к верхнему порогу рабочих температур энергетических установок, изготовленных  [c.44]

В чистом металле, находящемся в расплавленном состоянии, по мере снижения температуры, вызываемого потерей теплоты, подвижность частиц снижается, увеличиваются силы, стремящиеся расположить их в закономерном порядке, характерном для кристаллической решетки. При некоторой температуре, ниже критической, энергетически более целесообразным является достаточно строгое распределение положительно заряженных частиц в виде узлов решетки, металл переходит кз жидкого состояния в кристаллическое твердое. При этой критической температуре энергетически равно вероятны как твердое, так и жидкое состояния. Такая температура называется температурой плавления этого металла.  [c.123]

На практике трудно осуществить такой приемник излучения, который поглощал бы излучение всех длин волн от О до оо. В связи с этим часто применяются пирометры с приемника ш, воспринимающими излучение в интервале длин волн от 1 до Яг- Пирометр, действие которого основано на зависимости от температуры энергетической яркости излучения в ограниченном интервале длин волн, называется пирометром частичного излучения.  [c.60]


Если снять ограничение о постоянной плотности, то термодинамическое уравнение состояния примет вид соотношения между плотностью, давлением и температурой. Появление температурной переменной требует, чтобы одновременно решалось и уравнение баланса энергии (первый закон термодинамики), которое в свою очередь вводит две новые переменные — тепловой поток и внутреннюю энергию. Закон Фурье (связывающий тепловой поток с распределением температуры) и энергетическое уравнение состояния замыкают систему уравнений, приведенную в табл. 1-2.  [c.14]

Энергетическое урав- Скалярное ток Температура Скаляр  [c.14]

Энергетическое уравнение состояния связывает внутреннюю энергию с температурой, плотностью и деформированным состоянием (в том смысле, который будет определен ниже). Для простых ньютоновских жидкостей зависимостью от деформированного состояния можно пренебречь, так что энергетическое уравнение состояния сводится к зависимости удельной теплоемкости от температуры 1). Для изотермических систем уравнение баланса энергии можно затем решить независимо для определения диссипации энергии.  [c.15]

Таким образом, функция 4(Г, У) обладает специальным статусом, который, как следует заметить, не разделяется другими энергетическими уравнениями состояния. Например, если задана внутренняя энергия (Т, F), то из нее нельзя вывести соотношение между параметрами р, У и Г. Однако оказывается, что другой выбор независимых переменных, например выбор и У, меняет картину в том смысле, что функция (S, У) становится полностью определяющей ситуацию. По причинам, которые станут ясными в дальнейшем, мы оставляем температуру в качестве независимой переменной.  [c.148]

В крупных энергетических агрегатах такой метод снижения температуры горения неэкономичен, ибо лишний воздух, уходя из агрегата, уносит и теплоту, затраченную на его нагрев (возрастают потери с уходящ,ими газами — см. далее), Поэтому в топках с кипяш,им слоем крупных котлоагрегатов размеш,ают трубы 9 я /2 с циркулирующим в них рабочим телом (водой или паром), воспринимающим необходимое количество теплоты. Интенсивное омывание этих труб частицами обеспечивает высокий коэффициент теплоотдачи от слоя к трубам  [c.144]

Наиболее крупными из выпускаемых в настоящее время котлов являются энергетические. Их паропроизводитель-ность достигает 4000 т/ч, а мощность питающейся от них турбины может доходить до 1200 МВт, давление пара — до 25 МПа, температура перегретого пара — до 560 °С,  [c.149]

Вместе с тем сравнительно высокий уровень коэффициента избытка воздуха в ГТУ позволяет сжигать достаточно большое количество дополнительного топлива в среде продуктов сгорания, В результате из дополнительной камеры сгорания после ГТУ выходят газы с достаточно высокой температурой, пригодные для получения пара энергетических параметров в специально устанавливаемом для этой цели парогенераторе. На Кармановской ГРЭС по такой схеме  [c.175]

Наглядно показать степень энергетического несовершенства агрегатов, входящих в любое производство, можно с помощью энергетической диаграммы, составленной на основе баланса потоков энергии в каждом агрегате (см. пример баланса топки — рис. 17.1). На рис. 24.1, а приведена энергетическая диаграмма ТЭС. Основное количество энергии (55%) теряется в конденсаторе турбины. Повышая давление, а соответственно и температуру пара в конденсаторе, эту энергию полностью или частично можно использовать на теплофикацию (см. 6.4).  [c.203]

В комбинированных установках с реакторами ВГР гелий сначала охлаждается от 1000° С до 800° С в технологических теплообменниках, в которых происходит химический процесс, а затем используется в энергетической установке. Возможность получения в подобных установках дешевых восстановительных газов позволит осуществить коренное усовершенствование металлургического производства, т. е. получить губчатое железо из руды методом прямого восстановления [5]. При еще более высоких температурах гелия в реакторах ВГР возможно сочетание их с магнитогидродинамическим (МГД) преобразованием тепловой энергии непосредственно в электрическую.  [c.6]

Критерий энергетической оценки Е для реакторов с шаровыми твэлами определяется четырьмя независимыми друг от друга сомножителями первый из них характеризуется только параметрами шаровой укладки (диаметр шарового твэла, объемная пористость активной зоны т) второй отражает физические свойства газового теплоносителя (теплопроводность X, удельная теплоемкость Ср, газовая постоянная R и динамическая вязкость ji) третий определяется параметрами газового теплоносителя (средним давлением в активной зоне р, нагревом газа в зоне ДГг, средней абсолютной температурой 7 pi i четвертый — средней объемной плотностью теплового потока qv и геометрией активной зоны.  [c.92]


Если влияние абсолютного давления общепризнано и не требует доказательства, то влияние нагрева газа в реакторе на затраты энергии обычно не рассматривается. На самом Деле, повышение температуры газа на выходе из активной зоны хотя и увеличивает средний уровень абсолютной температуры, но оказывается весьма благоприятным. Так-, при одинаковой температуре газа на входе в реактор на уровне 550 К повышение средней температуры газа на выходе из активной зоны с 1000 до 1200 К увеличивает значение третьего комплекса в 1,82 раза (при сохранении одинакового значения давления)-. Влияние на критерий энергетической оценки четвертого сомножителя не требует особых пояснений, так как очевидно, что уплощение активной зоны приводит к увеличению значения Е, а увеличение объемной плотности теплового потока активной зоны к существенному ухудшению критерия Е.  [c.93]

Это соотношение показывает, что абсолютную температуру можно интерпретировать как статистическое свойство, определяемое поведением большого числа молекул. Сама по себе концепция температуры теряет свое значение, когда число молекул мало. Например, вполне разумно измерять температуру газа в объеме 1 фут (28,3 л) при обычном давлении, когда число молекул в этом объеме порядка 10 или больше. Однако если в сосуде создать вакуум до такой степени, чтобы в нем было только 10 молекул, то понятие температура газа потеряет смысл, поскольку число молекул недостаточно для обеспечения статистическою распределения энергии. Любой прибор, измеряющий температуру, введенный в сосуд, покажет температуру, определяемую скоростями энергетического обмена (главным образом путем радиации) между измеряемым прибором и стенками сосуда. Однако указанную этим прибором температуру нельзя рассматривать как температуру 10 молекул газа в сосуде. Во всех последующих уравнениях термодинамические свойства будут выражены в значениях абсолютной температуры Т вместо л.  [c.107]

Внутренняя энергия системы из п частиц может быть выражена в функции энергетических уровней отдельных частиц и абсолют ной температуры с помощью уравнений (3-18), (3-23) и (3-30)  [c.115]

Поступательная составляющая мольной внутренней энергии идеального газа может быть вычислена непосредственной подстановкой уравнения (2-13) для поступательных энергетических уровней в уравнение (4-3). Как уже говорилось в гл. 3 п. 8, суммирование при вычислении суммы состояний может быть заменено достаточно точно интегрированием для всех масс, больших массы атома водорода, и для температур, больших, чем несколько градусов Кельвина. В этом случае поступательную составляющую мольной внутренней энергии идеального газа наиболее просто  [c.116]

Выражение для теплоемкости в функции энергетических уровней и абсолютной температуры может быть получено дифференцированием уравнения (4-1) по температуре при условии постоянного-объема  [c.119]

Показать, что при температуре абсолютного нуля, когда все частицы находятся на самом низком энергетическом уровне, мольная энтропия определяется формулой  [c.148]

Во всех предыдущих примерах температура равновесной реакционной смеси была известна. При решении реальных технических проблем, включающих и работу химического реактивного двигателя, учитываются такие условия, когда реагирующие вещества загружаются в систему при известных температуре и составе и реагируют по существу при адиабатных условиях. В этих случаях конечная температура и состав реакционной смеси неизвестны. Определить максимальную конечную температуру и максимальное превращение можно при допущении, что система достигает состояния равновесия и что химическое равновесие рассчитывается одновременно с энергетическим балансом, когда неизвестны температура и состав.  [c.311]

Вследствие большого избытка пара, используемого в этой реакции, конечная температура изменяется при протекании реакции незначительно. В небольшом интервале получающихся температур средняя мольная теплоемкость каждого компонента между 298 °К и конечной температурой также мало изменяется и может считаться независимой от конечной температуры. Использование этого допущения значительно упрощает арифметические вычисления энергетического баланса.  [c.313]

Энергетическое состояние системы, имеющей огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией F, называемой свободной энергией (свободная энергия F=U — TS, где и — внутренняя энергия системы Т — абсолютная температура S — энтропия).  [c.44]

Так как связь в куперовских парах относительно слабая, то совершенный конденсат, охватывающий все электроны, способные объединяться в пары, может существовать лишь при абсолютном нуле. С повышением температуры в кристалле появляются фононы, способные разрушать пары и переводить электроны в нормальное состояние. Нормальные электроны, взаимодействуя с парами, нарушают их импульсную упорядоченность и ослабляют корреляционную связь в конденсате, т. е. уменьшают ширину энергетической щели Есв (рис. 7.14, б). При критической температуре энергетическая щель сужается до нуля и сверхпрогодящее состояние разрушается все электроны становятся нормальными. Теория БКШ дает следующее выражение для Т, ,  [c.200]

Потребляемая мощ иость, Вт Температура, Энергетический (лу-чистмй) поток, Вт Начальный световой поток, лм  [c.179]

Энергетическая ш ель между наивысшей занятой (HOMO) и наи-низшей незанятой (LUMO) молекулярными орбиталями является мерой полупроводниковых свойств металлических кластеров. Она уменьшается с ростом п, принимая значение 0,1 эВ для Аи и Ag79- При комнатной температуре энергетическая ш ель кластеров  [c.240]


Яркостная температура, энергетическая светимость, яркость и световая отдача ламп накаливания с воль амовой иитью [91]  [c.63]

Высоколегированные стали и сплавы по сравнению с менее легированными обладают высокой хладостойкостью, жаропрочностью, коррозионной стой костью и жаростойкостью. Эти важнейшие материалы для химического, нефтяного, энергетического машино-строенпя и ряда других отраслей промышлепности используют при изготовлении конструкций, работающих в широком диапазоне температур от отрицательных до положительных. Несмотря на общие высокие свойства высоколегироваьшых сталей, соответствующий подбор состава легирования определяет их основное служебное назначение. В соответствии с этим их можно разделить на три группы коррозионно-стойкие, жаропрочные и жаростойкие (окалиностойкие). Благодаря их высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.  [c.279]

Математический аппарат, требуемый для применения принципа затухающей памяти (функционалы и их свойства гладкости), обсуждается в следующем разделе. В разд. 4-3 в общем виде развита механическая теория простых жидкостей с затухающей памятью. В чисто механической теории в число переменных не включается температура и не учитываются энергетические соображения. Хотя такой подход удовлетворителен в применении ко многим механическим задачам, все же исключение из рассмотрения энергетических понятий серьезно ограничивает анализ даже в случае изотермических задач более сложная термомеханическая теория требует привлечения термодинамических соображе-  [c.133]

Воздухоподогреватели. 11о-скольку питательная вода перед экономайзером энергетических котлов имеет высокую температуру t после регенеративного нагрева (при р= 10 МПа, например, <п, = 230 °С), глубоко охладить уходящие из котла газы с ее помощью нельзя. Для дальнейшего охлаждения газов после экономайзера ставят воздухоподогреватель, в котором нагревают воздух, забираемый из атмосферы и идущий затем в топку на горение. При сжигании влажного угля нагретый воздух предварительно используется для его супжи в углеразмольном устройстве и транспортировки полученной пыли в горелку.  [c.151]

Особенность этих-реакторов — бесканальная активная зона, образованная графитовой кладкой, и коническая конфигурация нижнего отражателя — пода с одним центральным каналом выгрузки шаровых твэлов, заполняющих собственно активную зону. И опытный, и промышленный прототипы энергетического реактора выполнены по одной топливной схеме с многократной перегрузкой шаровых твэлов, вызванной существенной неравномерностью скоростей прохождения активной зоны шаровыми твэлами при наличии только одной выгрузки. В настоящее время этот существенный недостаток конструкции подробно обсуждается специалистами [18]. Предложены мероприятия, связанные с усложнением конструкции, но позволяющие обеспечить более равномерное продвижение всех шаровых твэлов и осуществить принцип одноразового прохождения активной зоны. Как указывалось выше, это даст возможность получить большие объемную плотность теплового потока и глубину выгорания и более высокую температуру гелия на выходе из реактора.  [c.17]

Третий сомножитель отражает влияние параметров выбранного теплоносителя давления, средней абсолютной температуры и нагрева газа в активной зоне — на критерий энергетической оценки в виде комплекса fP-tsJv IT ср  [c.93]

Этим теоретическое развитие стачистической термодинамики завершено. Уравнение (4-28) содержит все основные сведения, которые термодинамика может дать относительно свойств системы и обеспечить логическую основу для всех термодинамических анализов. Сумма состояний Z определяется энергетическими уровнями, абсолютной температурой и общим числом частиц, составляющих систему величина W определяется видом распределения энергии системы среди различных частиц, т. е. числом частиц на каждом дискретном энергетическом уровне.  [c.130]

Это уравнение представлено графически SO на рис. 60. Максимальная температура и превращение определяются пересече- =- so нием кривой уравнения энергетическо- Н го баланса с кривой равновесного со- f стояния. Адиабатная реакционная тем- пература составляет 807 °К и равно- веское превращение равно 0,905. Соот- ветствующая величина т равна 6 0,905, О т. е. 5,43. Равновесный состав реак-  [c.314]

При достижении температуры кристаллизации на кривой температура — время появляется горизонтальная площадка, Taif как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. По окончании кристаллизации, т. е. после полного перехода в твердое состояние, температура снова начинает снижаться, и твердое кристаллическое вещество охлаждается. Теоретически процесс кристаллизации изображается кривой /. Кривая 2 показывает реальный процесс кристаллизации. Жидкость непрерывно охлаждается до температуры переохлаждения Та, лежащей ниже теоретической температуры кристаллизации Ts. При охлаждении ниже температуры Ts создаются энергетические условия, необходимые для протекания процесса кристаллизации.  [c.45]

Первый зародышевый процесс, по-видимому, реализуется весьма редко (образование новых зерен из рекристаллизованных энергетически маловероятно). Миграция границ зсрсл является диффузионным процессом, скорость его определяется скоростью еамодиффузни, и поэтому этот процесс имеет преимущественное значение при высокой температуре, значительно выше темнерату-pyj рекристаллизации.  [c.93]


Смотреть страницы где упоминается термин Температура энергетическая : [c.271]    [c.68]    [c.29]    [c.227]    [c.248]    [c.70]    [c.126]    [c.281]    [c.203]    [c.121]    [c.234]    [c.267]   
Основные термины в области температурных измерений (1992) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте