Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация межзеренная

Для объяснения сверхпластичности предложено несколько гипотез. Большинство исследователей склоняются к %ому, что в условиях сверхпластичности значительную роль играет механизм межзеренной деформации, межзеренного скольжения наряду с внутризеренной деформацией путем скольжения и двойникования большую роль играют механизмы термической пластичности, залечивающие микродефекты на границе зерен.  [c.157]

Для анализа критических параметров и характера разрушения материала при длительном статическом и циклическом нагружениях целесообразно суммировать рассмотренные здесь механические и физические особенности процесса разрушения в виде схемы, приведенной на рис. 3.2, где линия 1 соответствует внутризеренному характеру разрушения по механизму, свойственному данному виду нагружения. При этом критические параметры (количество циклов до разрушения Nf при циклическом нагружении или пластическая деформация Zf при статическом нагружении) не зависят от скорости деформирования Кривая 2 соответствует межзеренному разрушению, для которого характерна чувствительность критических пара-  [c.153]


Изложенные здесь основные закономерности межзеренного разрушения в условиях длительного статического и циклического нагружений положены в основу рассматриваемой ниже физико-механической модели. Анализ влияния скорости деформирования на критические параметры, контролирующие предельное состояние материала, может быть выполнен исходя из схемы, приведенной на рис. 3.2. Для этого значения критической деформации е/ или долговечности Nf при межзеренном накоплении повреждений, рассчитанные по предлагаемой ниже модели, должны сравниваться с аналогичными параметрами, полученными в предположении внутризеренного характера зарождения макроразрушения по одной из ранее разработанных методик (см. гл. 2).  [c.155]

Рис. 3.4. Зависимости коэффициента зарождения межзеренных пор Ом от скорости пластической деформации (схема) Рис. 3.4. Зависимости коэффициента зарождения межзеренных пор Ом от <a href="/info/144754">скорости пластической деформации</a> (схема)
При межзеренном разрушении в инертной и агрессивной средах зависимости характеристик разрушения от скорости деформации целесообразно представить в виде схемы, показанной на рис. 3.5, где в качестве параметра разрушения выбрана критическая деформация е/, которая может быть определена из опы- °  [c.167]

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]


С целью более полной проверки модели был выполнен расчетный анализ долговечности одноосных образцов при двух режимах нагружения с различными скоростями деформирования на стадиях растяжения и сжатия. В первом режиме скорости деформирования i = lO-s с-, Il2 = с во втором— gi = 10- с-, 2 =10-2 с в обоих режимах нагружения размах деформаций Де = 2%. Результаты расчетов показали, что с увеличением по модулю скорости деформирования 2 (сжимающая часть цикла) при неизменной i (растягивающая часть цикла) долговечность до зарождения межзеренного разрушения уменьшается (рис. 3.12). Такой эффект связан с уменьшением залечивания пор при сжатии (с увеличением Ibl темп уменьшения радиуса пор падает), что достаточно хорошо согласуется с имеющимися экспериментальными данными [240, 273].  [c.185]

Подчеркнем, что полученное уравнение есть следствие предположения, что именно разность осредненных напряжений в фазах, определяющая фиктивные напряжения, формирует по линейному закону Гука деформации скелета из-за смещений зерен друг относительно друга. Таким образом, это уравнение задает совместное деформирование фаз с учетом несовпадения давлений в фазах из-за прочности скелета. В газожидкостных смесях давления в фазах могли различаться только из-за поверхностного натяжения и радиальных инерционных эффектов, описываемых уравнениями типа Рэлея — Ламба для размера пузырьков, а следовательно, и для объемного содержания фаз, когда разница между осредненными давлениями в фазах воспринималась поверхностным натяжением и радиальной мелкомасштабной инерцией и вязкостью жидкости. В насыщенной пористой среде разница между осредненными напряжениями воспринимается прочностью межзеренных связей.  [c.237]

Мягкие режимы способствуют протеканию равновесной кристаллизации. зона стыка противоположных фронтов кристаллизации выражена слабее, уменьшается концентрация деформаций. В то же время более равновесные условия кристаллизации обеспечивают протекание диффузионных процессов в околошовной зоне и в шве, благоприятствуют развитию межзеренной и зональной ликвации. В целом возникающие деформации воспринимаются кристаллизующимся швом более равномерно.  [c.489]

При температурах Т О,БТ до 20% от общей пластической деформации может быть связано с проскальзыванием по границам зерен. Немаловажную роль здесь играют диффузионные процессы, существенно облегчающие как внутризеренную, так и межзеренную пластическую деформацию. Становится возможным диффузионное перемещение (проскальзывание) отдельных кристаллитов, облегчаемое вакансиями, концентрация и подвижность которых при таких температурах существенно возрастают.  [c.105]

Поликристаллы при пластической деформации ведут себя иначе, чем монокристаллы, так как зерна, из которых они состоят, имеют разную ориентировку. Для сохранения в процессе деформации сплошности по границам необходимо действие нескольких независимых систем скольжения в каждом зерне. Число систем скольжения может быть уменьшено (по правилу Мизеса их должно быть пять) при наличии межзеренного проскальзывания или для некоторых частных случаев разориентаций между отдельными зернами. Однако всегда наличие границ приводит к тому, что простое скольжение отсутствует и деформация в каждом кристаллите начинается множественным скольжением. Поэтому поликристаллы упрочняются интенсивнее, чем монокристаллы.  [c.223]

Но деформация центральных частей зерна не всегда одинаково отличается от деформации у границ. На неравномерность деформации внутри зерна влияет неравномерное межзеренное распределение деформации. Если из двух соседних зерен средняя степень деформации, допустим, второго зерна меньше, чем первого, то деформация первого зерна вблизи границы также меньше. Этим обеспечивается равенство деформаций на границе зерна.  [c.229]

СРЕДНЕТЕМПЕРАТУРНАЯ ( ТЕПЛАЯ ) ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ. Верхняя граница этой области — температура начала рекристаллизации. До этих температур основной механизм пластической деформации — внутризеренное скольжение. Характерные признаки для высокотемпературных механизмов деформации — диффузионные механизмы, межзеренное проскальзывание и т. д. — появляются обычно выше температуры начала рекристаллизации на 100—200°С (для стали). Увеличение скорости деформации смещает границу высокотемпературных механизмов в область более высоких температур, например для сталей обнаруживаются явные признаки высокотемпературных механизмов деформации при 500—600° С и 8=10 -f-10 с , в то время как при е=10 - 10 2 с эта граница смещается до 1000° С. Высокотемпературная деформация молибдена начинается с 1000° С при е=10- -н10- с-, а при е= = 10 с эта температура повышается до 1200° С. Особенно заметно повышение пластичности в диапазоне температур теплой деформации для металлов с о. ц. к. решеткой повышение скорости деформации приводит к ее снижению. Могут быть отклонения от этого правила для сплавов с г. п. у. и о. ц. к. решетками, что связано с наличием фазовых превращений.  [c.512]


Хрупкие соединения являются причиной красноломкости тугоплавких металлов и сплавов. Твердые хрупкие соединения затрудняют межзеренное скольжение, непрерывность деформации вдоль границ зерен нарушается (вследствие снижения аккомодации за счет внутри-зеренной деформации) с последующим межзеренным разрушением.  [c.514]

Увеличение скорости деформации от е=10- с- до 10 —10° подавляет проявление красноломкости (рис. 272), что связано с подавлением термически активируемых диффузионных процессов, контролирующих межзеренное разрушение, и снижением вклада зернограничной деформации в общую деформацию металла. При малых скоростях деформации и температурах, соответствующих минимуму пластичности в интервале крас-  [c.515]

При интенсивном пластическом течении зерен выход большого числа дислокаций на границы приводит к формированию ступенек несоответствия из-за невозможности соблюдения сплошности прп передаче скольжения в соседнее зерно [406]. Каждая ступенька, создавая вокруг себя ноле напряжений, связанное с разориентацией зерен, ослабляет границу и создает в ней микротрещину. По мере протекания пластической деформации ступеньки несоответствия накапливаются и при некотором уровне пластической деформации может произойти межзеренное разрушение. Рельеф такого межзеренного разрушения представляет собой картину развитой пластической деформации (рис. 5.11, б),  [c.203]

Значительное увеличение предшествующей разрушению пластической деформации вызывает вытягивание зерен, что приводит к преимущественному росту межзеренных трещин иной разновидности — расслаивающих (рис. 5.11, е), ориентированных вдоль оси образца, причем поперечные растягивающие напряжения, возникающие при появлении шейки, способствуют этому процессу. Продольные расслаивающие трещины ограничивают рост поперечных межзеренных трещин, в результате чего доля межзеренного разрушения в изломе будет уменьшаться, несмотря на общий рост вязкости разрушения.  [c.208]

Доля межзеренного разрушения, так же как и в однофазных поликристаллах, зависит от температуры. По достижении межзеренной трещиной, раскрывающейся в процессе пластической деформации, критической длины она переходит в трещину скола.  [c.210]

Автомодельное поведение материала в области I и П1 проявляется, в первую очередь, в неизменности механизма разрушения, следовательно, в неизменности наблюдаемого рельефа излома независимо от свойств (механических характеристик) и структурного состояния материала. Из качественного анализа рельефа излома, когда разрушение реализовано в области I или П1, нельзя сделать заключение о том, каким было внешнее воздействие (скорость нагружения, температура, количество и направление действия сил и др.), и невозможно определить, какой материал разрушен (на какой основе), а также каковы его структурные особенности. При низкой скорости деформации могут проявляться и доминировать процессы скольжения в случае вязкого разрушения, и межзеренное проскальзывание в случае хрупкого разрушения. Однако эти особенности формирования рельефа излома могут быть одновременно следствием попадания в температурный интервал  [c.82]

При обработке давлением в металле происходит перемещение зерен относительно других или скольжение одной части зерна относительно другой. Поэтому, кроме деформации по плоскостям кристаллической решетки, различают также межзеренную и внутризерепную деформации. Межзеренная деформация осуществляется в результате сдвига одних зерен относительно других. Внут-ризеренная деформация происходит в результате сколь-  [c.13]

На первых стадиях деформация осуществляется в основном в результате межзеренного скольжения далее увеличивается влияние внутризеренной деформации, которая становится основным механизмом деформации при повышенных и высоких скоростях деформации. Межзеренное скольжение осуществляется при движении зернограничных дислокаций, внутризерен-ная — при движении дислокаций решетки.  [c.61]

Будем полагать, что в момент начала процесса неустойчивого деформирования за счет наличия пор нагруженность материала такова, что его реология начинает подчиняться закону упругопластического, а не упруговязкого деформирования. При этом принимается, как и в подразделе 2.2.2, что локальное изменение деформации в характерном сечении не приводит к изменению соотношения компонент тензора напряжений (а следовательно, и параметров qn = a fOi и q,n omfoi) в структурном элементе. Окончательно условие достижения критической деформации при межзеренном разрушении формулируется аналогично условию предельного состояния в случае внутризеренного вязкого разрушения  [c.156]

Как следует из рис. 3.5, при одной и той же скорости деформирования критическая деформация ef, соответствующая разрушению в агрессивной среде, меньше, чем Zf в инертной среде. Такой эффект может быть обусловлен либо увеличением интенсивности развития повреждений в агрессивной среде, либо снижением критической повреждаемости материала, а также совместным действием этих факторов. В работе [424] предложена модель, базирующаяся на предположении, что реагент среды, диффундируя к границам зерен, снижает их когезивную прочность и тем самым уменьшает критическую повреждаемость материала, отвечающую моменту образования макроразрушения. При этом темп развития межзеренных повреждений принимается инвариантным к среде. Наблюдаемое в опыте увеличение скорости ползучести в агрессивной среде по сравнению с на воздухе в работе [424] не нашло объяснения.  [c.167]

Рис. 3.12. Зависимость долговечности Nf от скорости деформирования I при жестком нагружении образцов из стали 304 с размахом деформации Ае = 2% г — расчет по модели межзе-ренного разрушения при различных I (I i I =1 I = I I I 2 —долговечность при виутризеренном разрушении 3 и < —данные эксперимента при межзеренном и виутризеренном разрушениях соответственно [434] 5 — расчет при I I = = 10- С- н I Ь I = 10-= с- 6 — расчет при I ii Г= 10- с- и I — = 10-= с- Рис. 3.12. Зависимость долговечности Nf от <a href="/info/28857">скорости деформирования</a> I при <a href="/info/28778">жестком нагружении</a> образцов из стали 304 с размахом деформации Ае = 2% г — расчет по модели межзе-ренного разрушения при различных I (I i I =1 I = I I I 2 —долговечность при виутризеренном разрушении 3 и < —данные эксперимента при межзеренном и виутризеренном разрушениях соответственно [434] 5 — расчет при I I = = 10- С- н I Ь I = 10-= с- 6 — расчет при I ii Г= 10- с- и I — = 10-= с-

Накопление межзеренных повреждений приводит к значительному разрыхлению материала, что при расчете НДС и полей повреждений требует решения связной задачи. Учесть влияние разрыхления на НДС можно с помощью реологических соотношений деформирования материала, связывающих скорость деформации с девиатором истинных активных напряжений Р ,/(1—S), где S — относительная площадь пор. Данный подход, хотя по форме и идентичен процедуре, предложенной Л. М. Качановым и Л. Н. Работновым, однако учитывает физику процессов, так как вместо формального параметра повре-  [c.186]

Один из наиболее трудных и наименее разработанных вопросов механики материалов — прогнозирование типа разрушения (внутризеренного или межзеренного) и условий перехода от внутризеренного, менее опасного разрушения, к межзерен-ному, приводящему к снижению критической деформации и долговечности материала. В настоящей главе предложен подход к анализу типа разрушения в зависимости от условий испытаний. Суть подхода заключается в параллельном анализе накоплений повреждений в теле зерна и по его границам тип разрушения будет определяться тем процессом, который дает меньшие значения параметров предельных состояний материала Nf и е/). Такой анализ может проводиться на основании физико-механических моделей кавитационного внутризеренного или усталостного разрушения, рассмотренных в гл. 2, и модели кавитационного межзеренного разрушения, представленной в данной главе.  [c.187]

Переход от одного механизма деформации к другому отвечает точкам бифуркации, при которых смена механизма может происходить при о=СТс, К=Кмин) либо Кмакс (рисунок 4.35). Поскольку в данном анализе важен финал -самоорганизованная перестройка системы на новый механизм диссипации энергии, рассмотрим финальную стадию повреждаемости, которой предшествуют зарождение межзеренных пор и их рост.  [c.317]

Границы с малыми углами 0 менее подвижны, чем с большими. Скорость проскальзывания по границе с большим углом примерно в 10 раз больше, чем с малым углом. Большеугловые границы более подвижны в связи с тем, что содержат повышенную концентрацию вакансий. Подвижность границ с большими углами демонстрируется хорошо известным фактором при рекристаллизации быстрее всех растут зерна, повернутые на значительные углы. Например, для г. ц. к. металлов при повороте на угол 30—40° вокруг оси [111] по отношению к своим соседям наблюдается отличие текстуры рекристаллизации от текстуры деформации. Согласно теории большеугловых границ Мотта межзеренное проскальзывание, т. е. относительное движение двух кристаллических поверхностей, происходит тогда, когда появляется разупрочненное состояние ( оплавление ) атомов вокруг каждого из островков хорошего соответствия. Свободная энергия F, необходимая для процесса разупрочнения, уменьшается с повышением температуры и в точке плавления будет равна нулю, а при абсолютном нуле будет равна пЬ, где L — латентная теплота плавления на атом, а п — величина, характеризующая структуру границы и соответствующую числу атомов в островке хорошего соответствия. Согласно этой гипотезе предлагается следующий вид функции F T)  [c.171]

Прерывистый характер процесса ползучести при макросдвиге дает основание предполагать, что процесс макродвижения по границам зерен осуществляется вследствие двух процессов сдвига по островкам хорошего соответствия и самодиффузии, упорядочивающей области больших нарушений. Межзеренное проскальзывание можно наблюдать по рельефу на поверхности шлифа деформированного металла. По границам зерна образуются каемки, свидетельствующие о наличии выступов и впадин. Происходящее вертикальное смещение (перемещение зерна) по отношению к поверхности шлифа позволяет с помощью интерференционного микроскопа определять величину пластической деформации, вызванной межзеренным смещением. Результаты измерений (рис. 100) дают основание считать, что доля скольжения по границам зерен мала и составляет приблизительно 10% от полной деформации (егр/е л 0,1). Эта величина зависит от угла разориентации 0, температуры, скорости деформации, приложенного напряжения, величины зерна. Например, величина смещения, а следовательно, и erp/8j увеличивается с уменьшением величины зерна и возрастанием напряжения при данной температуре (рис. 101,а). С повышением температуры отношение 8rp/ej благодаря диффузионным процессам возрастает до 0,3 (рис. 101,6). Д, Мак Лин теоретически доказал, что вклад в общую деформацию от межзеренных смещений не может быть выше 33% от общей деформации. Только в том случае, если процесс деформирования сопровождается миграцией границ, доля зернограничной  [c.173]

Особое внимание будет уделено структурным характеристикам, связанным с величиной зерна, протяженностью межзеренных и межфаэных границ, степенью химической неоднородности кристаллов, оказывающим влияние на пластичность и сопротивление деформации металлов и сплавов.  [c.500]

Наоборот, понижение скорости испытания приводит к многочисленным межкристаллитным трещинам никеля технической чистоты при 1000°С и к хрупкому разрушению при 600°С без существенной местной деформации. При 1000°С и малой скорости растяжения (0,5 мм/ч) видимые следы скольжения в зернах отсутствуют, наблюдается межзерен-ная деформация при скорости растяжения, 280 мм/ч деформация по границам зерен частично подавляется вследствие интенсивного развития процессов скольжения в зернах в сочетании с рекристаллизацией деформированной структуры. Понижение скорости растяжения при 600 "С также приводит к уменьшению внутризерениого скольжения [1].  [c.155]

С и 7 % при 600 °С. Растяжение при 900 °С приводит к возникновению межкристаллитных трещин и увеличению относительной доли межзеренного смещения до 14 %, Деформация образцов при 800— 1000 С протекает при очень малых нагрузках —4—10 МПа [1]. Все это типчно для металла с межкристаллитными примесями.  [c.167]

Так, создаваемые при ВМТО искажения границ в значительной степени предотв-ращают также образование фаз, ослабляющих связь между соседними зернами [16, 13], что приводит к существенному повышению сопротивления хрупкому разрушению. В частности, локализация деформации по границам зерен и связанное с этим искажение межзеренных переходных зон, сохраняемое и после охлаждения, благоприятно изменяют условия обособления, а также форму фаз и соединений, ответственных за развитие отпускной хрупкости стали, и, кроме того, способствуют оптимальному, т. е. соответствующему наивысшей прочности, распределению частиц упрочняющей фазы.  [c.49]

Основные результаты, полученные при исследовании указанных свойств В. Д. Садовским, Е. Н. Соколковым и другими исследователями, представлены в табл. 6. Там же указаны технологические режимы ВТМО и для сравнения приведены свойства исследованных сталей в неупрочненном состоянии (после закалки по стандартному режиму). ВТМО, особенно с подсту-живанием после начального нагрева до 950—900°, чтобы предотвратить развитие рекристаллизации, может привести к увеличению более чем в 2 раза ударной вязкости легированной стали [77, 92], а в некоторых случаях (сталь 20ХНЗ) — повысить ее почти в 10 раз [90]. При этом степень обжатия упрочняемого металла на первой стадии ВТМО не превышает 20— 30%. Изменение характера разрушения упрочненных сталей, повышение их вязкости и снижение чувствительности к обратимой отпускной хрупкости связываются [77, 91] с локализацией деформации по границам аустенитного зерна исходного нагрева и с искажением кристаллической решетки межзеренных переходных зон, сохраняемых после закалки, что изменяет условия выпадения и коагуляции фаз, способствующих развитию отпускной хрупкости, а также ослабляющих связь между соседними зернами [16, 13].  [c.56]


Разрушение по границам элементов структуры — межзеренное или межъячеистое разрушение, при котором трещина идет по границам зерен или дислокационных ячеек. Различают хрупкое межзеренное разрушение, которому предшествует пластическая деформация-внутренних объемов зерен и пластичное межзеренное разрушение. Указанные типы межзеренного разрушения обычно относят к низкотемпературным типам разрушения. Кроме того, существуют высокотемпературное межзеренное разрушение и межзеренное разрушение при ползучести. Эти механизмы обусловлены высокотемпературным-проскальзыванием по границам зерен и диффузионным зарождением пор на границах. Они подробно изложены в обзорах Эшби с сотрудниками [404].  [c.201]

Как было показано выше, типичным механизмом разрушения однофазных ОЦК-металлов является механизм скачкообразного подрастания докритической трещины, который не наблюдается в дисперсно-упрочненных материалах. Основной причиной, объясняющей отсутствие этого механизма, наряду с легкостью развития межзеренного разрушения, является легкость зарождения пор. Поры, как уже указывалось ранее, образуются в результате разрушения хрупких частиц и их межфазных границ. Так, если в однофазном молибдене МТ образование пор начинается лишь при 20—30 % пластической деформации [387], когда в области шейки образуется ячеистая дислокационная структура, то в дисперсноупрочненных сплавах микротрещины, т. е. зародыши пор, образуются либо еще в области упругой деформации, либо уже при 3—5 % пластической деформации.  [c.210]

Таким образом, в дисперсноупрочненных сплавах переход от хрупкого разрушения к пластичному совершается в три этапа на первом этапе скол вытесняется хрупким межзеренным разрушением на втором — механизмом слияния пор. На третьем этапе скол более не наблюдается, разрушение носит пластичный характер, по вследствие локализации пластической деформации в узком слое пластичность сплавов незначительна. Полностью пластичное разрушение в дисперсноупрочненных сплавах начинается в области температур, при которых становится возможным обход дислокациями частиц путем поперечного скольжения и появляется пластичность у самих частиц второй фазы.  [c.211]

При температурах выше О.ЗГпл (800 °С) в молибдене наблюдается внутризеренная ползучесть. Результаты испытания на ползучесть в интервале температур 0,5—0,8Гпл (1000—2000 °С) и скоростях нагружения до 10 С- показывают, что в таком случае преобладающим механизмом разрушения является межзеренное разрушение. При температурах выше 0,8Гпл (2000 °С) в молибдене наблюдаются рост зерна и другие структурные изменения, происходящие в процессе деформации. Механизм разрушения — разрыв.  [c.213]

Рассчитанная по уравнению (5.27) деформация, которая предшествует разрушению сколом в интервале хрупко-пластичного перехода, практически полностью совпадает с кривой 3. При расчете больших деформаций учитывался стадийный характер деформационного упрочнения через коэ( х шциент усреднения р (смотри выше). Кривые 4 и 5 на диаграмме ИДТ представляют диаграмму структурных состояний и соответствуют деформациям, при которых происходит изменение коэ4х))ициента деформационного упрочнения в процессе развития и перестройки дислокационной структуры. Эти кривые фактически являются верхней границей равномерного распределения дислокаций ( лес ) и соответственно нижней границей образования ячеистой структуры. Причем если при деформации выше 200 °С наблюдается равноосная ячеистая структура (5.19, г), то при более низких температурах ячеистая структура обнаруживает четкую связь с полосами скольжения (5.19, д), что свидетельствует об ограниченном характере поперечного скольжения. Кривые 7 н 9 построены с привлечением данных фрактографических исследований. При повторном изломе в продольном направлении охлажденных до —196 °С образцов, которые ранее были испытаны при 800 и 1000 С, в шейке образцов наблюдалось межзеренное хрупкое разрушение (рис. 5.19, б), причем размер зерен составлял 1—2 мкм. Поскольку после первичных испытаний ниже 600 С, несмотря на хорошо сформированную ячеистую структуру, такой вид разрушения не наблюдается, то предполагается, что в шейке образца при больших деформациях начинается динамическая рекристаллизация [435], хотя такие низкие температуры начала этого процесса (Тр 700 С, или 0,ЗЗГпл) еще пока не отмечались. Таким образом, кривая 7 нанесена в качестве нижней границы области динамической рекристаллизации. Кривая 9, построенная по данным фрактографических исследований, схематически показывает температурно-деформационную область, в которой имеет место расслоение по границам ячеистой структуры.  [c.220]


Смотреть страницы где упоминается термин Деформация межзеренная : [c.16]    [c.154]    [c.155]    [c.239]    [c.216]    [c.434]    [c.175]    [c.425]    [c.429]    [c.48]    [c.210]    [c.83]   
Теория обработки металлов давлением Издание 2 (1978) -- [ c.121 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.155 ]



ПОИСК



Деформация пластическая межзеренная

Мнушкин, Б. В. Потапов, М. С. Бридавский, Б. М. Гугелев, Земзин. Механизм пластической деформации сварных соединений в области межзеренных разрушений



© 2025 Mash-xxl.info Реклама на сайте