Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ВАЛЫ Деформации кручения

Под действием приложенных сил у осей появляются деформации изгиба, а у валов деформации изгиба и кручения. Чрезмерный изгиб осей и валов нарушает нормальную работу подшипниковых узлов, зубчатых зацеплений, фрикционных механизмов. Поэтому величина деформаций валов и осей ограничивается, а их жесткость является одним йз основных критериев работоспособности. Чрезмерно большие деформации и, как следствие, разрушения валов и осей могут возникнуть вследствие колебательных процессов, особенно при резонансе. Поэтому валы быстроходных машин (центрифуги, турбины и др.) дополнительно проверяют на отсут-  [c.420]


Деформация кручения наиболее распространена в валах. Если нагрузка на прямолинейный стержень (вал) состоит только из моментов Мк, плоскости которых перпендикулярны к оси стержня, то из шести усилий и моментов в любом сечении остается только крутящий момент Мкр.  [c.42]

Характер распределения напряжений по сечению выясним, рассмотрев геометрическую картину деформации вала при кручении. Для этого на поверхности круглого вала нане. е i  [c.209]

Для вычисления деформаций вала при кручении воспользуемся формулой (У.7)  [c.117]

Приведем пример расчета вала (рис. IX. 15, а) на статическую прочность. На вал действуют две вертикальные силы F и F , одна горизонтальная сила / 2 Ри внешних момента 7 =4 кН-м, Г2==10 кН-м, 7 з = 6 кН-м, вызывающих деформацию кручения. Материал вала — сталь 45, предел текучести Су = 360 МПа, предел прочности а =610 МПа.  [c.258]

Пример 139. К валу длиною I, один конец которого закреплен жестко, приложен на свободном конце крутящий момент, который заставляет вал испытывать деформацию кручения. Определить работу возникающих при этом сил упругости, если суммарный момент упругих сил пропорционален углу закручивания, причем коэффициент пропорциональности (коэффициент  [c.304]

Разрущение детали при деформации сдвига называют срезом. Подобное разрушение можно наблюдать, например, в болтовых и заклепочных соединениях (рис. 12.2) и при деформации кручения валов. Условие прочности детали, работающей на срез, имеет вид  [c.143]

В главе XXI были рассмотрены расчеты валов на кручение, но при этом была сделана оговорка, что практически валы, как правило, одновременно испытывают и кручение и изгиб. Поэтому рассмотренный расчет является весьма приближенным. Здесь кратко остановимся на методике расчета валов с учетом совместного влияния кручения и изгиба. Сначала на двух примерах покажем, какие нагрузки вызывают деформации вала.  [c.308]

Деформации кручения имеют место при ковке, штамповке, изготовлении коленчатых валов (с коленами, расположенными в разных плоскостях) и производстве витых сверл.  [c.124]

Из определений видно, что при работе валы всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси — только деформацию изгиба (возникающими в отдельных случаях деформациями растяжения и сжатия чаще всего пренебрегают).  [c.211]

Максимальный прогиб вала или оси называется стрелой прогиба и обозначается / Деформация кручения вала характеризуется углом закручивания ф.  [c.218]


В результате прогиба и поворота сечений вала изменяется взаимное положение зубчатых венцов передач (рис. 12.7) и элементов подшипников, что вызывает неравномерность распределения нагрузок по ширине венцов зубчатых колес и длине подшипников скольжения, перекос колец подшипников качения. Деформация кручения валов вызывает неравномерность распределения нагрузки по длине шлицев в шлицевых соединениях, по длине венцов валов — шестерен, может быть причиной потери точности ходовых винтов токарно-винторезных станков и причиной возникновения крутильных колебаний валов.  [c.218]

Деформации валов при кручении заключаются в повороте одного сечения относ ительно другого.  [c.31]

Считаем, что шестерня закреплена посредине длины вала. Эпюра крутящих моментов, возникающих в поперечных сечениях вала, а также эпюры поперечных сил и изгибающих моментов показаны на рис. 13.5.2, б, в, г. Из сказанного видно, что сечения вала претерпевают три вида деформации кручение, сдвиг и поперечный изгиб. Если рассматривать участок вала в крупном масштабе, то на его сечении (рис. 13.5.3) можно показать действия напряжений от каждой из перечисленных деформаций.  [c.234]

Характер распределения напряжений по сечению выясним, рассмотрев геометрическую картину деформации вала при кручении. Для этого на поверхности круглого вала нанесем сетку, состоящую из линий, параллельных оси, и линий, представляющих собой параллельные круги (рис. 208, а). После приложения скручивающего момента наблюдаем следующее образующие цилиндра превращаются в винтовые линии, т. е. линии одинакового наклона к оси стержня, параллельные круги не искривляются и расстояние между ними практически остается неизменным радиусы, проведенные в торцовых сечениях, остаются прямыми. Полагая, что картина, наблюдаемая на поверхности стержня, сохраняется и внутри, приходим к гипотезе плоских сечений сечения, плоские до деформации, остаются плоскими при кручении круглого стержня, поворачиваясь одно относительно другого на некоторый угол закручивания.  [c.228]

Крутильными называют колебания стержней, сопровождаемые переменной деформацией кручения. С этими колебаниями в машиностроении приходится иметь дело главным образом при анализе деформаций различного рода валов, работающих преимущественно на кручение.  [c.592]

Учитывая, что вал испытывает деформацию кручения (между колесами) и изгиба, определяем наибольший приведенный момент М р (Н-мм). Если Мс > Mfj, то на опоре С  [c.276]

Оси отличаются от валов тем, что не испытывают деформации кручения и рассчитываются на изгиб по формулам  [c.276]

Деформации кручения подвергаются многие детали машин и конструкций валы, пружины и пр. Рассмотрим пример кручения вала. Представим себе вал (рис. 69), опирающийся на подшипники, на котором закреплены  [c.129]

Различают проектный и поверочный расчеты валов. Проектный расчет на статическую прочность производится для ориентировочного определения диаметров. Такой расчет производится условно, обычно для определения диаметра входного конца, вала, который в большинстве случаев испытывает деформации кручения. Остальные диаметры назначаются при разработке конструкции с учетом технологии изготовления и монтажа.  [c.385]

На рис. 22.3 представлена схема двухступенчатого редуктора, из которой видно, что концы или участки под соединительные муфты первого и третьего валов испытывают только деформации кручения (/—III — валы). В таком случае расчетное уравнение прочности участка первого вала под соединительную муфту (d,,, ) будет иметь вид  [c.385]

Уравнения движения привода выписаны на основе уравнений Лагранжа, а рассеяние энергии в системе учтено в виде модели вязкого трения. Численные значения коэффициентов затухания колебаний определили расчетным путем с последующим уточнением в процессе экспериментального исследования. При расчете параметров дифференциальных уравнений движения учли, что баланс крутильной податливости складывается из податливостей валов па кручение, контактных деформаций сопряженных деталей, податливостей опор и изгибных деформаций валов, приведенных к крутильной податливости. Уравнения движения главного привода, имеющего переменные массы и жесткости, представили  [c.131]


Пусть в некоторый момент, от которого ведется отсчет времени, центр диска каким-либо образом отклонен от оси вращения Ох, после чего система предоставлена самой себе (рис. III. 16, а). Рассмотрим последующий процесс движения, принимая, что вал только изгибается и не претерпевает деформации кручения кроме того, положим, что угловая скорость вращения вала о остается все время постоянной.  [c.173]

В большинстве случаев величина угла закручивания вала практического значения не имеет. Общепринятое в недалёком прошлом ограничение деформаций валов в /4— /3° на 1 м длины вала условно и, будучи связано с ограниченной областью применения, устарело. Деформация кручения в основном может служить лишь для-сравнительной качественной оценки жёсткости на закручивание.  [c.523]

Установка позволяет измерять как статические, так и динамические деформации при среднем сопротивлении проволочного датчика в 200 ом. Питание установки от сети переменного тока на 110/220 в (выпрямитель У). В установке используется вспомогательная несущая частота 2000 гц, вырабатываемая гетеродином II. Напряжение этой частоты модулируется по амплитуде за счёт изменения сопротивления датчика, включённого в одно из плеч моста на входе усилителя III. Установка допускает независимую работу одновременно трёх каналов. Один из них, кроме исследования деформации по одному датчику (аналогично двум первым каналам), позволяет вести по четырём датчикам измерение деформации кручения (в валах). Выход рассчитан на применение шлейфового осциллографа (1- -5 класса), стрелочного прибора или рекордера и катодного осциллографа. При работе на шлейф, стрелочный прибор и рекордер несущая частота подавлена полностью.  [c.238]

Датчики крутящего момента аналогичны датчикам силы и также основаны на методе упругого уравновешивания измеряемой величины. Они содержат упругий элемент, снабженный преобразователем угла его закручивания в электрический сигнал и токосъемником для передачи сигнала с вращающегося вала (рис. 24). Угол закручивания измеряют либо по деформации кручения, либо по углу поворота двух сечений упругого элемента, находящихся на определенном расстоянии друг от друга. Первый метод широко распространен, что является следствием стремления унифицировать методы измерений и аппаратуру. Тензорезистивные преобразователи позволяют достичь этого благодаря их универсальности. Однако сигнал наиболее отработанных и прецизионных металлических тензорезисторов мал по абсолютной величине и при передаче по токосъемнику подвержен влиянию помех. Кроме тензо-резисторных, применяют магнитоупругие МЭП [40]. Второй метод осуществляют с Помощью двух растровых дисков, расположенных рядом, но опирающихся на упругий элемент возможно дальше друг от друга. Взаимное угловое перемещение растров измеряют оптическим, индуктивным или другим МЭП, чувствительным к этому Параметру  [c.231]

Таким образом, обведенные формулы позволяют решить две основные задачи сопротивления материалов - определить напряжения и деформации вала при кручении.  [c.178]

Крутильными называются колебания, которые сопровождаются деформацией кручения. Такие колебания, как правило, возникают в валах, работающих на кручение.  [c.348]

Валы испытывают деформацию кручения (рис. 12). Если вал, делающий п об мин, передает мощность N, крутящий момент в поперечном сечении вала при N в кет  [c.12]

Рис. 13. Деформация кручения круглого вала Рис. 13. <a href="/info/4834">Деформация кручения</a> круглого вала
При работе принодоп дейстиующис нагруаки дса зормируют корпуса узлов (редукторов, электродвигателей и др.), атакже плиты (рамы). Особенно значительны деформации кручения высоких рам. Эти деформации приводят к дополнительному, главным образом радиальному, смещению валов и, как следствие, к дополнительному нагружению элементов муфт, консольных участков валов. С учетом деформаций радиальное смещение валов может в 1,1... 1,6 раза превышать значения, приводимые в табл. 20.1 большие значения при монтаже узлов на высоких рамах, меньшие —на низких рамах и литых плитах.  [c.304]

Г е ш е и и е. Вал вращается с постоянной угловой скоростью, зна1Н1Т, силы, действуазщпе иа него, взаимно уравновешены. Вал под де11ст 1 1ел сил испытывает деформацию кручения и изгиба в двух плоскостях. Прежде чем прист пить к построению эпюр, вычислим реакции в опорах  [c.325]

Под действием приложенных сил у осей появляются деформации изгиба, а у валов деформации изгиба и кручения. Чрезмерный изгиб осей и валов нарушает нормальную работу подшипниковых узлов, зубчатыхзацёшюний, фракционных катков, а Ш жесткость является одним из основных критериев работоспосооност й7  [c.513]

Так как понятие полярного момента инерции понадобится нам при изучении деформаций кручения круглых валов, то выведем формулы для определе1шя полярных моментов инерции круглого сплошного и кольцевого сечений, принимая за полюс центры этих фигур.  [c.217]

Неравномерность распределения нагрузки по длине зуба возникает в результате следующих основных причин непарал-лельность и перекос осей валов за счет неточностей изготовления корпусных деталей и неточностей сборки погрешностей при изготовлении зубчатых колес и валов деформации валов (изгиб и кручение) под нагрузкой. На рис. 7.21 показан перекос зубчатых колес в результате изгиба валов под нагрузкой. При симметричном располо-  [c.131]


Для записи зависимости М (1) изменения крутящего момента по времени обычно используют деформацию скручивания вала. Измерение деформаций осуществляется четырьмя датчиками проволочного сопротивления, наклеенными на вал под углом 45° к образующей. Четыре наклеенных на вал датчика составляют измерительный мост. Неточности, возникающие от деформаций сжатия или изгиба измерительного вала, устраняются указанным способом наклейки датчиков. При изгибе вращающегося вала расположенные попарно датчики деформируются на равную величину, но имеюшую разные знаки. Равные деформации датчиков не нарушат баланса моста, вследствие чего изгиб вала не будет отмечаться шлейфом осциллографа, записывающим крутящий момент. При нагрузке вала (сжимающей или растягивающей силами) все наклеенные датчики изменят свои сопротивления на одну и ту же величину одного знака. Это вызовет равное для всех плеч моста изменение сопротивлений, что не нарушит его баланса. Таким образом, датчики измерят только деформацию кручения. Вращение вала обусловливает необходимость применения токосъемного устройства со скользящими контактами.  [c.440]

Уравнения движения шарнирного четырехзвенника с упругими звеньями. В механизме шарнирного четырехзвенника (рис, 52) считаем, что внешние силы приложены только к звеньям / и <3 и представлены парами сил с моментами 4Уд и Жз. Инерцией шатуна 2 пренебрегаем и, следовательно, реакции, действующие на него со стороны звеньев 1 и 3, направлены по линии ВС. В этом случае шатун испытывает только деформации растяжения — сжатия и его коэффициент ПОДЙТЛНйОеТН МбЖНб оН()ёдёЛить по формуле для цилиндрических стержней е2 = 12 Е.8, где /2— длина шатуна Е — модуль упругости 5 — площадь поперечного сечения шатуна. Коэффициент податливости вала звена 1 определяем, учитывая только деформации кручения е = 1 1 01 р ), где 1 — длина участка вала  [c.120]

Уравнения движения шарнирного четырехзвенника с упругими звеньями. В механизме шарнирного четырехзвенника (рис. 73, а) коэффициенты податливости 6i и 63 звеньев / и <3 можно определять по формуле (12.2), т. е. принимая во внимание только деформации кручения валов этих звеньев. Податливость шатуна 62 можно найти по формуле (12.3), считая, что он испытывает только деформации растяжения или сжатия. Внешние силы приложены только к звеньям 7 и < и представлены парами сил с моментами М и М . Шатун не нагружеи внешними силами, и, кроме того, считаем, что его массой можно пренебречь. Тогда величина деформации шатуна А/ найдется из услов гя  [c.247]

Нижняя поверхность фаски клапана на высоте до 1,5 мм имеет угол наклона 45°, совпадающий с углом наклона фаски седла. Верхняя часть фаски имеет угол наклона 43° 15 и при посадке клапана на седло с ним не соприкасается. Но мере отработки ресурса двигателя поверхность прилегания фаски клапана к седлу непрерывно увеличивается в результате износа седла и главным образом вследствие вытяжки головки н стержня клапана под нагрузкой. К исходу межремонтного срока клапан обычно прилегает к седлу всей поверхностью фаски. В дальнейшем нижняя кромка фаски клапана начинает отставать от седла, между ними образуется щель, и фаска, подвергаясь более интенсивному действию горячих газов, сравнительно быстро разрушается в результате перегрева и прогара вследствие ухудшения теплоотдачи в седло. Таким образом, дифференщ1альная фаска ускоряет приработку и обеспечивает герметичность посадки клапана и межремонтный ресурс. Повышение износостойкости деталей зависит не только от общей жесткости конструкции, но и от местной. Нагрузочная способность цилиндрических и конических колес тем выше, чем равномернее распределена нагрузка по длине зуба. Причинами неравномерности, кроме неточностей изготовления деталей передачи и сборки их, являются изгиб и кручение валов, деформация опор и корпусов. Изгиб валов вызывает перекос осей колес, вследствие чего возникает концентрация нагрузки у одного из краев зуба.  [c.182]

На рис. 4.8 показаны две схемы интенсивной пластической деформации — кручение под высоким давлением и равноканальное угловое прессование. В случае схемы а дискообразный образец помещают в матрицу и сжимают вращающимся пуансоном. В физике и технике высоких давлений эта схема развивает известные идеи наковален Бриджмена. Квазигидростатическая деформация при высоких давлениях и деформация сдвигом приводят к формированию неравновесных наноструктур с большеугловыми меж-зеренными границами. В случае схемы б, принципиальные основы которой были разработаны В. М. Сегалом (Минск), образец деформируется по схеме простого сдвига и существует возможность повторного деформирования с использованием различных маршрутов (рис. 4.9). В начале 1990-х гг. Р. 3. Валиев с соавт. [4] использовали обе схемы для получения наноматериалов, детально исследовав закономерности получения в связи с особенностями структуры и свойств.  [c.128]


Смотреть страницы где упоминается термин ВАЛЫ Деформации кручения : [c.81]    [c.90]    [c.182]    [c.379]    [c.146]    [c.161]    [c.97]    [c.112]   
Справочник машиностроителя Том 3 (1951) -- [ c.530 ]



ПОИСК



Валов кручение

Деформация кручения



© 2025 Mash-xxl.info Реклама на сайте