Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник действие на стенку

При возникновении акустических колебаний температура стенки обычно быстро уменьшалась. Было трудно определить, предшествовало ли падение температуры стенки пульсациям давления или наоборот. Эксперименты показали, что звуковые волны, генерируемые внешним источником, действуют на пограничные слои вблизи поверхностей нагрева, что приводит к увеличению интенсивности теплообмена [20]. Следовательно, можно полагать, что уменьшение температуры стенки было обусловлено увеличением коэффициента теплоотдачи вследствие взаимодействия акустического поля с местным полем течения у поверхности нагрева. Однако установка ротаметра в контуре оказала весьма существенное дополнительное демпфирующее воздействие, в результате чего акустические колебания в контуре в условиях вынужденной кон-  [c.358]


Действие на стенку точечного источника. Пусть источник находится в точке А (а, 0), а стенка представляет собой плоскость д = 0. Отображением источника относительно стенки является источник той же мощности, расположенной в точке В (—а,0), и, следовательно,  [c.205]

Одним из источников загрязнения питательной воды котлов ТЭЦ может быть возврат из паровой теплосети конденсата, содержащего большое количество окислов железа. Они образуются под действием углекислого газа и кислорода на стенки трубопроводов [Л. 132]. При наличии и конденсате растворенных углекислого газа и кислорода на поверхности металла образуется рыхлая пленка окислов с низкими защитными свойствами.  [c.343]

Тогда температура стенки пузыря радиуса Но, обусловленная действием источника dQ на Но, определяется выражением  [c.254]

Помимо внешних сил на тепловой блок действуют внутренние силы, обусловленные давлением газа и коррозией при высоких рабочих температурах. У а-активных источников в результате захвата электронов а-частицами образуется гелий, который постепенно выходит из материала топлива и создает давление на стенки ампулы. По мере распада изотопа давление гелия в ампуле может достигать нескольких сот атмосфер. Для поддержания этого давления в допустимых пределах обычно в ампуле предусматривается объем для сбора гелия.  [c.154]

Если жидкость находится в покое, то давление повсюду равно П. Таким образом, эффект движения состоит в уменьшении давления иа стенку. Следовательно, стенка действует на источник с силой (на единицу ширины стенки), определяемой формулой  [c.205]

Теорема 3. Рассматриваемое аналитическое продолжение переводит линии тока в линии тока, изобары и изоклины в изобары и изоклины, свободные линии тока в свободные линии тока, многоугольные стенки в параллельные многоугольные стенки, источники и вихри в бесконечно удаленные источники и вихри. Если модуль скорости на свободной линии тока равен V, то вектор силы F, действующей на обтекаемое препятствие, равен величине ipv l2, умноженной на вектор, соединяющий один конец препятствия Z с его отраженным образом Zj.  [c.87]

В вагоне, движущемся поступательно и прямолинейно по горизонтальным рельсам, на гладком горизонтальном столе свободно лежит груз движение вагона тормозится рассмотреть движение груза. Наблюдаемое явление — ускоренное сближение груза с передней стенкой вагона ). Наблюдатель в вагоне объясняет это следующим образом так как векторное ускорение вагона направлено противоположно его векторной скорости, то переносная сила инерции направлена к передней стенке вагона по мнению этого наблюдателя эта сила вызывает ускоренное движение груза по направлению к передней стенке однако наблюдатель не может указать физический источник этой силы. Наблюдатель на Земле, которую с достаточной степенью точности можем в этой задаче считать инерциальной системой отсчета, видит, что груз, лежащий на гладком столе, продолжает по инерции свое прямолинейное равномерное движение в направлении движения вагона так как вагон замедляет свое движение, то он движется со скоростью, меньшей скорости груза, и поэтому отстает от груза. Так как вагон не является инерциальной системой отсчета, то наблюдатель в вагоне не вправе объяснить ускоренное движение груза действием на него других тел, т. е. силами, — оно объясняется без введения дополнительных сил движением самого вагона.  [c.108]


Итак, рассматривается течение жидкости и теплообмен в вертикальной трубе при постоянной плотности теплового потока на стенке и однородном тепловыделении в потоке за счет действия внутренних источников. Физические свойства жидкости, исключая плотность, считаются постоянными. Изменение плотности в зависимости от температуры предполагается линейным и учитывается лишь в том члене уравнения движения, который выражает подъемную силу. Таким образом, движение жидкости в данном случае представляет собой результат взаимодействия вынужденной и свободной конвекции. При этом профили скорости и температуры будут осесимметричными.  [c.333]

Для расчета температурного поля сечения осесимметричного кольца от теплообмена с корпусом в уравнения (1) вводятся значения мощностей источников и стоков. Очевидно, что источники будут действовать на участке, соответствующем внутренней стенке кольца и их мощность равна  [c.371]

Естественно предположить, что эмульгирование происходит вследствие выброса частиц воды ультразвуковыми волнами в находящийся над водой бензол. Однако опыты Ричардса [1710, 1717] показали, то это не является единственной причиной. Ричардс установил, чта эмульгирование происходит особенно сильно на границах раздела между жидкостью и источником колебаний и между жидкостью и стенками сосуда. Например, если в стеклянном сосуде, стенки которого хорошо смочены водой, образовать слой бензола над слоем воды, то под действием ультразвуковых волн на стенках сосуда будет наблюдаться сильное эмульгирование, в то время как граница раздела между водой и бензолом остается еще прозрачной.  [c.462]

Уравнение Эйлера. Рассмотрим теплоизолированное течение жидкости, не обладающей вязкостью и теплопроводностью. При таком течении в потоке отсутствуют силы трения и нет обмена теплотой между отдельными частями движущейся жидкости и между жидкостью и ограничивающими поток твердыми стенками (при этом считается, что внутренних источников теплоты в потоке нет). Кроме того, для упрощения предполагается, что на текущую жидкость не действуют массовые силы, в частности сила тяжести.  [c.287]

Возможен и другой теоретический подход к изучению сопротивления при внезапном сужении потока. Основным источником потерь здесь (см. рис. 111) является область отрывного течения 5, возникаюш,ая вследствие сжатия потока при входе в трубу (канал) меньшего сечения с после-дуюш,им расширением струи. Для изучения явления прежде всего необходимо выяснить эффект сжатия. Под действием центробежных сил искривленных струек поток сжимается при внезапном сужении на небольшом расстоянии от входной кромки (стенки АВ) живое сечение потока становится минимальным (сечение С—С). Отношение площади этого сечения шс к сечению трубы 2 характеризуется коэффициентом сжатия  [c.192]

При расчете систем охлаждения различных технических устройств часто встречается задача совместного решения системы одномерных уравнений, описывающих распределения температур стенки и жидкости по длине канала. Рассмотрим наиболее простой вариант этой задачи. В канале длиной I с площадью сечения стенки S v и смоченным периметром / протекает жидкость с удельной теплоемкостью с и массовым расходом G (рис. 5.7). Теплопроводность материала стенки может зависеть от температуры kw = (Tw). В стенке действует источник теплоты, для которого задается мощность на единицу длины qi, которая может зависеть от координаты X и температуры стенки Tw- Теплообмен между стенкой  [c.169]

Действующие в циклах очистки силы воздействуют не только на отложения золы и оксидную пленку, они могут вызывать и некоторые повреждения поверхностного слоя металла труб. К таким силовым воздействиям, например, относятся термические напряжения в стенке трубы в циклах водной очистки поверхности нагрева, являющиеся источником образования термоусталостных трещин в поверхностном слое металла. Глубина таких трещин, как и глубина износа труб, является фактором, определяющим ресурс работы труб. Характерной особенностью развития термоусталостных трещин в поверхностном слое металла является то, что их рост при увеличении количества теплосмен протекает с затухающей скоростью, т. е. после определенного числа циклов водных очисток труб поверхностей нагрева прирост глубины термоусталостных трещин приближается к нулю. Таким образом, в поверхностном слое металла образуется сетка микротрещин определенной глубины, не представляющих опасности с точки зрения надежности работы труб поверхностей нагрева котлов.  [c.8]


Для выбора мер защиты подземных сооружений от блуждающих токов обычно проводят комплекс электрических измерений. Для проектируемых сооружений можно расчетным путем найти так называемое критическое расстояние между источником блуждающих токов и подземным сооружением, при котором блуждающие токи не будут для него представлять опасность. Однако такое удаление удается осуществить весьма в редких случаях, так как подземные металлические сети в черте города зачастую проходят вдоль рельсовой сети, например, трамвая. При наличии изоляционного покрытия на трубопроводе токи стекают с поврежденных участков, плотность которых в отдельных местах бывает очень велика. В практике встречаются случаи, когда в анодных зонах от действия блуждающих токов образуются сквозные отверстия в стенках труб или резервуаров через несколько месяцев после укладки их в землю. Надо отметить, что только на ремонт тепловых сетей в г. Уфе за пятилетку затраты составили более 2,5 млн. рублей.  [c.47]

Мы не будем касаться сущности концевых потерь. Она доходчиво объяснена в литературных источниках 14], 15], [10], [11], [18], 121], [22], [25] и в других работах. В основном причиной концевых потерь в лопаточном канале является радиальная неуравновешенность сил, действующих в пограничном слое на выпуклой и вогнутой поверхностях лопаток. Под действием этих сил слой приходит в движение вдоль высоты лопатки, причем под влиянием движения пограничного слоя на торцовых стенках канала рабочий агент протекает с вогнутой поверхности лопаточного канала через слой на торцах на выпуклую поверхность и там встречается с таким же течением на выпуклой поверхности стенки канала. Встречаясь, эти два потока образуют вихри у выпуклой стенки иа концах лопаток. Вихри и движение пограничного слоя вдоль указанных стенок возмущают концевые части пространственного потока в канале. В нем создаются вторичные течения, на что, как и на поддержание вихрей, расходуется энергия потока.  [c.246]

Оплавление стенки начинается не сразу после действия источника тепла. Несколько мгновений уходит на прогревание стенки. Этот промежуток времени определяется из условия =О, которое подставляем в уравнение баланса (17). Находим  [c.190]

Эффект магнитной памяти металла к действию на] рузок растяжения, сжатия, кручения и циклического нагружения выявлен в лабораторных и промышленных исследованиях. Уникальность метода магнитной памяти заключается также в том, что он основан на использовании собственного магнитного поля, возникающего в зонах устойчивых полос скольжения дислокаций, обусловленных действием рабочих нагрузок. В результате взаимодействия собственного магнитного поля (СМП) с магнитным полем Земли в зоне концентрации напряжений на поверхности объекта контроля образуется градиент магнитного поля рассеяния, который фиксируется специализированными магнитометрами. Механизм возникновения СМП на скоплениях дислокаций обусловлен закреплением доменных границ, когда эти скопления становятся соизмеримы с толщиной доменных стенок. Ни при какгос условиях с искусственным намагничиванием в работающих конструкциях такой источник информации, как собственное маг-  [c.350]

В литературе отмечены многочисленные факты коррозионного разрушения под воздействием ртути аппаратуры из алюминиевых сплавов, свинца, адмиралтейского сплава, углеродистой стали и других материалов [20]. Амальгамирование меди, латуни, олова и других цветных металлов сопровождается изменением электродных потенциалов и возникновением контактной коррозии. При этом иногда обнаруживается коррозионное растрескивание сплавов этих и некоторых других металлов. Даже нержавеюшие стали в присутствие ртути и в особенности ее растворимых солей могут подвергаться значительной коррозии в таких жидкостях, к действию которых эти стали обычно устойчивы. Следует особенно внимательно наблюдать за тем, чтобы ртуть и ее соединения не разносились по аппаратуре и не загрязняли ее. Здесь уместно напомнить о том, что источником ртутных загрязнений в производстве может быть не только ртутный катализатор, но и разбитые термометры, манометры или другие приборы, вследствие чего ртуть иногда обнаруживается там, где ее, казалось бы, не должно быть. В аппаратуре ацетальдегидного производства ртутные загрязнения могут находиться во многих местах и в значительных количествах, поэтому при ремонте аппаратов и трубопроводов следует принимать особые меры предосторожности. Ртуть является сильным ядом, проникающим в человеческий организм через кожу и дыхательные органы. Кроме того, в присутствии азотной кислоты и окислов азота, находящихся в аппаратуре цеха регенерации контактного раствора, ртуть может образовывать взрывчатое соединение — гремучую ртуть. По этой причине, приступая к разборке и ремонту трубопроводов на установке окисления нитрозных газов, следует предварительно испытать небольшую пробу продуктов, отложившихся на стенках труб. Если лабораторная проба на удар дает воспламенение, что указывает на наличие гремучей ртути, то трубопроводы перед ремонтом следует хорошо промыть аммиачной водой.  [c.34]

Поле излучаемых сейсмических волн может быть очень сложным вследствие влияния геометрии источника, пустот и других границ в окрестности источника. Йзуче 1ие простейших источников в безграничной среде дает основу для понимания тех факторов, которые влияют на излучение сейсмической энергии в более сложных ситуациях. Например, решение задачи для точечного источника позволяет получить оценку расстояния, на котором излучающаяся часть поля доминирует над волновыми процессами в ближней зоне. Эта оценка применима и при исследовании более сложных источников. Интересно также выяснить, может ли конкретный источник, размеры которого достаточно малы, быть аппроксимирован простейшим источником в безграничной среде. Например, ниже будет показано, что давление, действующее на коротком участке бесконечной цилиндрической полости, не совпадает с точечным источником даже в пределе, когда диаметр цилиндра стремится к нулю, а давление, прилагаемое к стенкам сферической полости, эквивалентно простому источнику. Много работ по механизму очага землетрясений связано с поиском простых источников, которые дают такое же распределение напряжений, как и наблюдаемые при землетрясениях. Подобные исследования оправдывают тщательное изучение поведения среды при воздействии сосредоточенных сил и их комбинаций до того, как перейти к более реалистическим моделям источников упругих волн,  [c.203]


У многоклеточных иа восприятии света специализируются уже обособленные клетки. Сначала они разбросаны в кожном покрове, потом собираются в группы, У некоторых медуз светочувствительные клетки лежат на дне углубления, что позволяет чучше определять направление иа источник света Затем ямка делается глубже, края ее сближаются, появляется полый шар с небольшим отверстием, обращенным во писшнюю среду. Такая полость действует уже по принципу камеры-обскуры, образуя на дне (на стенке против отверстия) изображение окружающих предметов. На рис, 4 изображена схема органа зрения моллюска наутилус . Глаз уже появился, но он еще нуждается в значительных усовершенствованиях. В каких  [c.11]

Японскими конструкторами предложен и испытан многодисковый скважинный источник, состоящий из молота, который под действием пружины действует на наковальню [158, 159]. Последняя сжимает набор дисков, пространство между которыми заполнено рабочей жидкостью. Вьщавливаемая жидкость приводит к резкой смене давления на стенки скважины, что и является источником упругих волн. Установлено, что при наличии одной группы дисков интенсивность сигналов пропорщюнальна массе молота и площади дисков и не зависит от их количества. Если источник состоит из 2 или 3 многодисковых систем, то его мощность увеличивается соответственно в 1,4 и 1,8 раза.  [c.43]

Вторая причина происхождения волн связана с освобождением участка среды от напряженного состояния или с локальным высвобождением упругих напряжений, когда запасенная упругая потенциальная энергия переходит в кинетическую энергию смещений. В этом качестве забой выступает как источник типа центра расширения. Его действие осложняется факторами, сопровождающимися выделением энергии при разрушении горной породы, трещинообразовании, микроударах и т.д. Флуктуация радиального напряжения на стенках цилиндрической полости (ствола скважины) вызывает образование только продольной волны, а изменение тангенциального напряжения порождает поперечную волну. Но даже при наличии только одного типа напряжений возникновение одной волны неизбежно влечет за  [c.200]

При выращивании методом Чохральского некоторых кристаллов (например, боратов) из раствор-расплавов, обладающих высокими значениями динамической вязкости, конвективное течение расплава в тигле очень слабое. Вследствие недостаточного перемешивания может нарушиться однородность раствор-расплава, появиться термогравитационное и концентрационное расслоение расплава. Концентрационное переохлаждение и ячеистый рост очень часты для таких систем. Получение качественного кристалла становится проблематичным или даже невозможным. Необходимое в таких случаях принудительное перемешивание раствор-расплава может быть достигнуто при использовании формообразователя - мешалки, расположенной соосно с тиглем внутри него [1-3], вращением тигля [4], действием на расплав вращающихся перегородок, выступов, мешалок [5-6]. Этим контактным методам, как правило, сопутствуют вибрации вращательных механизмов, необходимость создания зазоров и/или уплотнений, усложняющих установки и, главное, вносящих случайные возмущения в процесс роста кристалла и являющихся источником загрязнения расплава. В работах [7-9] предложен новый подход, основанный на бесконтактном возбуждении азимутальных течений в расплаве путем вращения неоднородного теплового поля на стенке тигля. Тепловое поле формируется нагревательной печью, состоящей из равномерно расположенных по окружности вертикальных нагревательных элементов (фиг. 1, а). При поочередном подключении двух противоположных нагревателей 7-2, затем 1 -2 и т.д. (фиг. 1, б) на стенке тигля по ф создается распределение температуры, похожее на двухлопастной пропеллер.  [c.36]

Наибольший диапазон изменения значений относится к водопроводным трубам. Это объясняется тем, что качество воды весьма влияет на состояние поверхности стенок. С течением времени вследствие коррозии стенок их шероховатость возрастает. К воде, предназначаемой для водоснабжения, предъявляются специальные требования. Технологический процесс очистки воды обычно связан с ее хлорированием и введением ряда химических реагентов, которые увеличивают агрессивность воды и ее коррозирующее действие. Опыт эксплуатации больших водопроводов показывает, что шероховатость труб за 10—15 лет возрастает в 2—3 и брдее раз. Если водозабор осуществляется из подземного источника, прибавляется еще фактор отложения солей, увеличивающий шероховатость стенок. В системах теплоснабжения, где вода специально обрабатывается с целью ее умягчения, коррозионные процессы и отложения солей происходят не так интенсивно и шероховатость труб с течением времени изменяется мало. В газопроводах газ  [c.175]

Для контроля плоских степок разработана приставка к тому же прибору, действие которой основано на использовании явления рассеяния излучения контролируемой стенкой (рис. 2). При этом, в отличпс от прибора для труб, здесь применен экран 2 между излучателем 1 и детектором излучения 4. Схема прибора благодаря этому значительно проще. Поглотитель, размещенный между излучателем и кристаллом, заметно не утяжеляет прибор, так как здесь применены изотопы с мягким излучением (Se ) или тормозное излучение Р-источников Sr9o, или В первом  [c.218]

Л. Бергман [194], рассматривая диспергируюш ее действие ультразвука, указывает, что наиболее эффективно эмульгирование протекает на границе раздела между жидкостью и источниками колебаний, а также между жидкостью и стенками сосуда.  [c.229]

Раскатчики грунта (рис. 12.18, а) являются самодвижущимися машинами непрерывного действия, предназначенными для образования скважин в грунте методом его постепенного уплотнения рабочим органом в виде конических катков 5, установленных на шейках эксцентрикового вала 2. Первый (направляющий) каток 4 свободно посажен на ось вала, а все остальные катки, с возрастанием их диаметров от лидерного к замыкающему катку, свободно посажены на шейки вала, каждая из которых, а следовательно и ось поддерживаемого ею катка, развернуты относительно предыдущей шейки на угол так, что при вращении вала происходит завинчивание всего устройства в осевом направлении (на скважину) с одновременным уплотнением грунта в стенках скважины обкатывающимися по ним катками. Реактивный момент воспринимается замыкающим катком с ребрами 1 по его периферии. Вращение валу передается от встроенного в замыкающий каток мотор-редуктора, питаемого электроэнергией от внешнего источника через кабель 5.  [c.353]

На схеме сдвиг распространился от переднего края кристалла до линии АВ, параллельной силам Р. При этом правый край кристалла сместился вниз на гираметр решетки. При дальнейшем действии этих сил АВ продолжит смещение к задней стенке кристалла—А В. Рис. 1.7. Схема работы источника Франка—Рида  [c.14]


Смотреть страницы где упоминается термин Источник действие на стенку : [c.170]    [c.46]    [c.163]    [c.201]    [c.156]    [c.53]    [c.29]    [c.252]    [c.216]    [c.225]    [c.153]    [c.181]    [c.26]    [c.118]    [c.260]    [c.20]    [c.186]    [c.201]   
Теоретическая гидродинамика (1964) -- [ c.205 ]



ПОИСК



Действие на стенку точечного источника



© 2025 Mash-xxl.info Реклама на сайте