Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волна, узлы

При необходимости, например, в ходе расчета течений с малым числом Моо и, как следствие, большим отходом головной ударной волны, узлы сетки могут сгущаться к поверхности тела вдоль j-той координаты с коэффициентом сгущения, индивидуальным для каждого луча.  [c.99]

T. e. выражается формулой, аналогичной (4.11), но с заменой косинуса на синус. Это означает, что вектор В также образует стоячую волну, узлы которой совпадают с пучностями стоячей волны Е. Векторы Е и В расположены во взаимно перпендикулярных плоскостях. Из сравнения (4.11) и (4.14) также видно, что но времени колебания электрического и магнитного полей стоячей электромагнитной волны отличаются по фазе на четверть периода колебаний. Это означает, что если, например, напряженность электрического поля стоячей волны достигает максимума, то магнитная индукция в это время равна нулю если же напряженность электрического поля стоячей волны достигает половины максимальной величины, то магнитная индукция также достигает половины максимальной величины, а отличаются они тем, что, например, напряженность электрического поля находится в фазе роста ее абсолютного значения, а индукция — в фазе уменьшения. Стоячая электромагнитная волна показана на рис. 12 для такого момента времени, когда ни напряженность электрического поля, ни индукция не достигают своих максимальных абсолютных значений.  [c.36]


Это уравнение является суперпозицией двух стоячих волн, узлы которых смешаны на четверть длины волны и которые имеют разные  [c.223]

Радиальная функция соответствующая главному значению, действительна. Поэтому при умножении ее на мы получаем волну, узлы которой неподвижны в пространстве. Следовательно, в противоположность решениям которые (по крайней мере на больших расстояниях) представляют комбинацию из сходящейся и расходящейся сферических волн типа функция представляет стоячую волну. Хотя ввиду ее действительности мы имеем некоторое упрощение вычислений, но с физической точки зрения для задач рассеяния функция неприемлема, так как она является решением уравнения (11.8), имеющим вид стоячей волны. По самой природе этих задач в них входят волны, распространяющиеся в положительном или отрицательном направлениях.  [c.285]

Рейнольдса. Рост гармоник высоких номеров приводит к образованию пилообразной волны узлы скорости, как и в линейном случае, остаются неподвижными, тогда как узлы плотности и пучности давления перемещаются между узлами скоростей, а у колебательной скорости возникает дополнительный узел — бегущий разрыв. Когда разрыв движется вдоль резонатора, то уменьшается его положительная часть, а отрицательная увеличивается и к другому узлу скорости этот разрыв приобретает противоположную полярность. На границах резонатора возникают резкие перепады давления, тем большие, чем круче фронт волны для нахождения его ширины необходимо учесть процессы диссипации. Этот учет осуществляется при помощи уравнений Бюргерса для каждой из встречных волн. При больших значениях времени ударный фронт постепенно расширяется и стоячие волны снова становятся гармоническими.  [c.98]

Три нормальном падении звука на плоскую границу раздела двух сред, обладающих разными акустическими сопротивлениями, возникает стоячая волна (колебание, образованное двумя волнами, бегущими навстречу друг другу). На расстояниях К/2 в стоячей волне располагаются точки, в которых колебания отсутствуют (узлы) посередине между узлами располагаются точки с максимальной амплитудой (пучности). В поле стоячих волн значения А, В, и, Р при полном отражении вдвое превосходят эти значения в исходных бегущих волнах. Узлы и пучности колебательной скорости располагаются в тех же точках, что узлы и пучности смещения. Распределение звукового давления в стоячей волне также характеризуется наличием узлов и пучностей, однако положение узлов давления совпадает с положением пучностей смещения. Таким образом, узлы и пучности скорости и смещения отстоят от узлов и пучностей давления на Х/4.  [c.11]


Изменение фазы электрического вектора на я приводит к тому, что его узлы совпадают в стоячей волне с пучностями магнитного вектора и наоборот, т. е. узлы и пучности электрического вектора сдвинуты на четверть длины волны по  [c.97]

Если приемник радиации реагирует (как это обычно бывает) на , то можно измерить расстояние между двумя узлами или двумя пучностями Е и определить длину волны. Такой метод, впервые примененный в классических экспериментах Герца с дециметровыми волнами, нетрудно проиллюстрировать, используя технику УКВ (Х 3 см), что облегчается высокой степенью монохроматичности излучения клистрона. В этом опыте электромагнитная волна падает под прямым углом на поверхность какого-либо вещества, хорошо отражающего УКВ, например на лист металла. Приемник УКВ, перемещаемый вдоль линии распространения волны (рис. 2.4), будет регистрировать пучности вектора Е, расстояние между которыми составит примерно 1,5 см.  [c.77]

Физическая природа наблюдаемых явлений обусловлена взаимодействием световой волны и вещества, анизотропия которого может быть связана с особенностями строения его молекул или, что чаще имеет место, с особенностями кристаллической решетки, в узлах которой находятся атомы или ионы исследуемого вещества.  [c.113]

Опыт должен состоять в установлении распределения слоев выделившегося серебра в толще эмульсии. Трудность этого наблюдения, связанную с малыми расстояниями между пучностями и узлами, Винер обошел, применив прием малого наклона , впервые указанный Ньютоном (см. 26). Система стоячих волн получалась Винером в воздухе при отражении монохроматического света от металлического зеркала. На рис. 5.3, представляющем схему подобного опыта, показано положение очень тонкого (около светочувствительного слоя, образующего малый угол ф с поверхностью зеркала ММ. Стеклянная пластинка, на которую нанесен  [c.116]

Нетрудно видеть, что условие, облегчающее наблюдение колец Ньютона, состоит в очень малом наклоне поверхности линзы к поверхности пластинки. Подобный прием был много лет спустя применен в опытах Винера. Как уже упоминалось в 23, в одном из опытов, особенно отчетливо определяющих положение пучностей и узлов по отношению к поверхности пластинки, Винер, пользуясь расположением, данным Ньютоном, получил стоячие волны в пространстве между линзой и пластинкой и наблюдал следы пучностей в виде концентрических колец, подобных кольцам Ньютона.  [c.126]

Вывод этих уравнений достаточно прост и основывается на следующих соображениях если твердое тело находится в кристаллическом состоянии, то обязательно имеется направление, вдоль которого все идентичные по свойствам узлы располагаются параллельными рядами и в каждом таком ряду они связаны трансляцией а. Если на такой ряд направить под произвольным к нему углом ао параллельный пучок монохроматического излучения с длиной волны % (рис. 1.37),. то отражение будет происходить только в тех направлениях, для которых все взаимно складывающиеся отражения от узлов, связанных между собой трансляцией а, находятся в одной фазе. Этс возможно лишь в том случае, если разность хода между волнами рассеянными от двух соседних узлов А=ЛС—5D (рис. 1.37), равна целому числу Длин волн, т. е.  [c.39]

Покажем это на примере двухмерной решетки. Допустим, что на двухмерную решетку с известными параметрами а, Ь а углом между ними 7 в направлении So падает плоская монохроматическая волна длиной X. Определив по формулам (1.13) и (1.20) параметры обратной решетки а, Ь и у, построим ее на бумаге в масштабе 1/Х. Выберем произвольный узел А обратной решетки (рис. 1.38). Из узла А в направлении, обратном направлению So, отложим отрезок 1/Я, (в масштабе 1/Х) до точки О. Из этой точки, как из центра, описываем окружность Эвальда радиусом 1/Х. Заметим, что точка О не обязательно попадет в какой-либо узел решетки.  [c.40]

Для возникновения радиационных дефектов наибольшее значение имеют упругие столкновения быстрых частиц с атомами кристалла. Если энергия, переданная в результате упругого столкновения от движущейся частицы атому мишени, превышает некоторое значение, то атом мишени, выбитый из узла решетки, оставляя вакансию, движется через кристалл. Наименьшее значение энергии Ed, которую необходимо передать одному из атомов кристалла, чтобы он оказался в ближайшей междоузельной позиции, называют пороговой энергией. Если энергия, переданная атому быстрой частицей, меньше Ed, то смещения атома не происходит, а возникают лишь упругие волны, энергия которых переходит в энергию теплового движения атомов.  [c.95]


Переход от реальных тепловых колебаний решетки к нормальным колебаниям. Атомы кристаллической решетки совершают тепловые колебания относительно положений равновесия—узлов решетки. В идеальной решетке все атомы физически равноправны. В такой структуре взаимосвязанных атомов смещение любого из атомов распространяется по всему коллективу по кристаллической решетке бежит волна — типичное коллективное движение. Совокупность коллективных движений может быть представлена Б виде суперпозиции плоских монохроматических волн (так называемых нормальных волн) вида  [c.132]

Из распределения амплитуд скоростей и деформаций, приведенного на рис. 436, нетрудно усмотреть, что для каждой данной гармоники узлы скоростей совпадают с пучностями деформаций и, наоборот, пучности деформаций — с узлами скоростей, а также что узлы и пучности скоростей (или узлы и пучности деформаций) расположены в чередующемся порядке на расстоянии Х /4 друг от друга, где Xfi — длина волны, соответствующая данной гармонике.  [c.667]

Бегущая волна скоростей отражается от закрепленного конца стержня также с поворотом фазы на я (аналогично тому, как при отражении отдельного импульса от закрепленного конца стержня скорость изменяет знак). Соотношение между фазами падающей и отраженной волн скоростей получается такое же, как и для волны смещений. Поэтому узлы скоростей в стоячей волне образуются в тех же точках, что и узлы смещений. Это и понятно в узле смещений сечение стержня все время остается в покое, следовательно, и скорость в этом сечении все время равна нулю. Ясно также, что пучности скоростей лежат в тех же точках, что и пучности смещений.  [c.685]

Что касается бегущей волны деформаций, то при отражении от закрепленного конца стержня она не изменяет фазы (так же, как не изменяется знак деформации для отдельного импульса). Соотношение между фазами падающей и отраженной волн для д ормаций будет не таким, как для смещений и скоростей, вследствие чего узлы деформаций получатся не в тех местах, где узлы смещений. Можно было бы, складывая падающую и отраженную волны деформаций, как это было сделано для волны смещений, найти места узлов и пучностей деформаций. Но и без этих расчетов можно сказать, что на закрепленном конце стержня должна получиться пучность деформации, так как в этом месте падающая и отраженная волны деформаций совпадают по фазе.  [c.685]

Электрик провела исследования на резиновых дисках и на тонких металлических дисках с грузами на периферии, имитировавшими лопатки. Исследование было проведено на вращающихся дисках при помощи стробоскопа. При вращении дисков со скоростями, превышающими определенную величину, было видно, что венец диска начинает со верщать волнообразные движения. Были видны форма волн, узлы, пучности, их скорость. Эти  [c.66]

В случае s-поляризованного излучения и в пределе Im 82 -9- О (т. е. Р - 0) внутри МИС образуется стоячая волна, узлы которой совпадают с тонкими сильнопоглощающими слоями. Поток энергии вглубь структуры при этом отсутствует, и, следовательно, коэффициент отражения равен единице. В действительности конечное поглощение вещества ограничивает глубину проникновения МР-волны величиной 0 Фо/(я р Im р) аь - Если  [c.94]

Следовательно, для нас будет весьма важно знать число тоячих волн данного класса, имеющих частоту, меньшую чем V. В этом случае снова полезно воспользоваться представлением решётки в пространстве частот . Для аксиальных волн узлы решётки будут расположены на соответствующих осях пространства частот , а для тангенциальных волн они будут расположены на соответствующих координатных плоскостях. Число узлов решётки может быть легко подсчитано можно, например, подсчитать сглаженное среднее число узлов решётки, соответствующее частотам, лежащим в некоторых пределах.  [c.427]

РАДИОВОЛНОВОДЫ, металлич. трубы и диэлектрич. стержни или каналы, в к-рых распространяются радиоволны. Механизм их распространения в Р. обусловлен многократным отражением эл.-магн. волн от его стенок. Пусть плоская волна падает в вакууме на идеальную отражающую металлич. плоскость х=0 (рис. 1), причём электрич. цоле Е волны параллельно этой плоскости. Суперпозиция падающей и отражённой волн образует плоскую неоднородную волну, бегущую вдоль оси ог ехр(га)г— Ьк г), и стоячую волну вдоль оси ох ехр (г(ог)зш (/Сд.ж). Здесь к и — проекции волнового вектора к на оси ох и 02, (О — частота волны. Узлы стоячей волны — плоскости, на к-рых У=О, отстоящие друг от друга на расстояниях х=пп кх (п=0, 1, 2, 3,. . . ). В них можно помещать идеально проводящие тонкие металлич. листы, не искажая поля. Подобными листами можно ограничить систему с боков,  [c.606]

При решении динамической упругопластической задачи возникает вопрос о пространственно-временной аппроксимации процесса взрывной запрессовки трубки в коллектор. На рис. 6.3 представлена схема расчетного узла ячейки коллектора для расчета собственных напряжений и деформаций. Здесь Явн — внутренний радиус трубки б — толщина трубки, S — толщина стенки коллектора а — ширина перемычки между отверстиями. Выбор величины радиуса Ян проводится посредством численных расчетов из условия инвариантности НДС от Rh при неизменных характере и уровне импульсной нагрузки при взрыве. Расчет НДС проводится в осесимметричной постановке и отражает ряд существенных особенностей процесса запрессовки трубки в коллектор. К ним относятся возможность учета сложного характера распределения во времени и пространстве давления на внутренней поверхности трубки, обусловленного неодновременной детонацией цилиндрического заряда. Кроме того, с помощью специальных КЭ достаточно хорошо моделируется условие контакта трубки с коллектором в процессе прохождения прямых и отраженных волн напряжений при динамическом нагружении. Учет указанных особенностей позволяет рассчитывать неоднородное поле напряжений и деформаций по высоте трубки (толщине коллектора) и, следовательно, достаточно надежно при учете общ.их, остаточных и эксплуатационных напряжений проанализировать НДС в зоне недовальцовки, в которой инициировались имеющиеся разрушения в коллекторе.  [c.334]

В теплоэнергетике, использующей как ядерное, так и обычное углеводородное топливо, одной из важнейших является проблема отвода огромного количества тепла с теплоотдающих поверхностей. Наиболее распространенным и используемым для этих целей теплоносителей являются парожидкостные смеси. Поэтому исследователями большое внимание уделяется течению парожидкостных смесей при наличии фазовых переходов в каналах с обогреваемыми и необогреваемыми стенками. Видимо на эту тему появляется наибольшее число публикаций в области неоднофазных течений. Здесь особый интерес представляют исследования структуры потока при различных режимах, кризисов теплообмена, обусловленных нарушением контакта жидкой фазы с теплоотдающей поверхностью, гидравлического сопротивления и т. д. Проблемы безопасности реакторного узла или устройств аналогичного типа привели к необходимости изучения истечений наро-жидкостных смесей из сосудов высокого давления, распространения возмущений и ударных волн в двухфазных парожидкостных потоках. Здесь же отметим течение влажного пара (смесь пара с каплями воды) в проточных частях турбомашин.  [c.10]


Точки, где амплитуда равна 2Eq, удовлетворяют условию os (kx + л/2) ==1, т. е. kx + л/2 = тл, где m = 1, 2, 3,. .. — целые числа. Эти точки называются пучностями. Их координаты будут л уч = Я/2 (т— /2)- Легко видеть, что первая пучность (т = 1) электрического (светового) поля удалена на V4 от отражающей поверхности металлического зеркала, а последующие располагаются через каждые полволны. Следовательно, расстояние между соседними узлами н пучностями будет равно четверти длины волны.  [c.97]

Опыт Винера со стоячими световыми волнами. Первый опыт со стоячими световыми волнами был выполнен в 1890 г. Винером. Схема установки Винера представлена иа рис. 5.4. Плоское металлическое (покрытое серебряным слоем) зеркало освещалось нормально падающим параллельным пучком монохроматического света. Плоская тонкая стеклянная пластинка П, поверхность которой покрыта тонким слоем (толщиной, меньшей V20 полуволны падающего света) прозрачной фотографической эмульсии, расположена на металлическом зеркале под небольшим углом ф к его поверхности. Отраженный от зеркала 3 лучок интерферирует с падаюидим в результате получается система стоячих световых волн. Согласно теории отражения света от металлической поверхности, первый ближайший к зеркалу узел электрического вектора расположится на поверхности зеркала, так как при таком отражении именно электрический вектор меняет свою фазу на противоположную. Следовательно, первый узел магнитного вектора расположится на расстоянии в четверть длины световой волны от зеркала. Таким образом, перед зеркалом будет наблюдаться система узлов (и пуч-  [c.97]

Подход Рэлея к изучению теплового излучения. Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. Рэлей в отличие от своих предшественников впервые применил методы статистической физики к явлениям теплового излучения. Равновесное электромагнитное излучение, находящееся в замкнутой полости с постоянной температурой стенок, рассматривалось им как система стоячих волн разных частот, распространяющихся во всевозможных направлениях. Частоты образовавшихся стоячих волн должны удовлетворять тем же условиям, что и частоты стоячих упругих волн в стержне. При колебаниях упругого стержня на его закрепленпых концах образуются узлы смещения и на длине стержня L укладывается целое число полуволн  [c.330]

Соответствуюший опыт для исследования действия света на фотографическую эмульсию был выполнен Винером (1890 г.). Идею Винера легко понять, вообразив следующий опыт. Представим себе слой фотографической эмульсии, налитой на зеркальную металлическую поверхность. Падающий нормально на зеркало сквозь эмульсию монохроматический (приблизительно) свет отражается от металлического зеркала и дает систему стоячих волн, причем ближайший к зеркалу (первый) узел электрического вектора расположится на поверхности зеркала, ибо в случае отражения от металла меняет фазу именно электрический вектор первый узел магнитного вектора расположится на расстоянии в четверть световой волны от нее. В толще фотографической эмульсии поле световой волны будет представлено системой узлов и пучностей напряженностей электрического и магнитного полей с соответствующими переходами от узлов к пучностям.  [c.116]

Структура интерференционной картины во встречных пучках, как у же отмечалось, представляет собой систему плоскостей узлов и плоскостей пучностей стоячей волны, которая будет зафиксирована в толзцине слоя фотоэмульсии в виде полупрозрачных отражающих слоев серебра. Для появления у голограмм1>1 трехмерных свойств необходимо, чтобы на толщине фотоэмульсии укладывалось по крайней мере несколько отражающих слоев. Благодаря избирательности трехмерной голо[раммы по отношению к частоте света восстановление изображения можно осуществлять с помощью источника, имеющего сплошной спектр (например лампы накаливания или Солнца).  [c.45]

Строго параллельная ориентация спинов в ферромагнетике наблюдается лишь при ОК. Такое расположение спинов соответствует минимуму энергии. Результирующая намагниченность при этом равна намагниченности насыщения J. С повышением температуры ферромагнетика его энергия возрастает за счет появления перевернутых спинов. В отличие от основного состояния (при 7=0 К) состояние с перевернутым спином является возбужденным. Если соседние спины связаны взаимодействием вида (10.45), то поворот в обратную сторону одного спина требует затрат дополнительной энергии Другими словами, из-за обменного взаимодействия состояние с перевернутым магнитным моментом в одном из узлов решетки является энергетически невыгодным. Соседн ]е спины стремятся возвратить перевернутый спин в исходное положение. Обменное взаимодействие приводит при этом к тому, что соседний спин переворачивается сам. По кристаллу пробегает волна переворотов спинов. Существование таких волн было установлено в 1930 г. Ф. Блохом. Сами волны получили название спиновых.  [c.340]

Если это условие соблюдено точно, то, как следует из наших рас-суждений, амплитуда стоячей волны в пуч юсти должна возрасти до бесконеч1юсти, так как только волна с бесконечно большой амплитудой в пучности может дать конечную амплитуду на бесконечно малом расстоянии от узла. Однако к такому результату мы пришли только потому, что не учитывали затухания при распространении волн в стержне. Как мы увидим ниже, затухание приводит к тому, что и в точке, где образуется узел стоячей волны, амплитуда смещений все же не падает до нуля. Поэтому, если задать смещения с конечной амплитудой концу стержня, на котором должен установиться узел волны смещений, то амплитуда в пучности волны будет хотя и большой, но все же конечной она будет тем больше, чем меньше затухание волн в стержне.  [c.684]


Смотреть страницы где упоминается термин Волна, узлы : [c.709]    [c.308]    [c.348]    [c.47]    [c.188]    [c.639]    [c.17]    [c.231]    [c.97]    [c.229]    [c.121]    [c.359]    [c.377]    [c.114]    [c.378]    [c.21]    [c.132]    [c.855]    [c.683]    [c.684]   
Теоретическая гидродинамика (1964) -- [ c.4 , c.6 , c.379 ]



ПОИСК



Егоров. О возможности использования явлений, связанных с прохождением звуковой волны через системы сред с различным волновым сопротивлением, для решения некоторых задач смазки узлов трения

Узлы стоячей волны



© 2025 Mash-xxl.info Реклама на сайте