Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия Статические свойства

При конструировании, кроме удельной жесткости, необходимо учитывать условия эксплуатации, так как они влияют на долговечность многих конструкций. Ограничения связаны с прочностью материала при усталостном нагружении, высокотемпературной длительной прочностью, коррозией под напряжением, ростом трещин вокруг надрезов и дефектов. Хотя статические свойства металлических сплавов значительно повышаются в результате влияния различных механизмов упрочнения, такие материалы часто теряют вязкость и долговечность при динамических условиях работы. Одной из наиболее важных задач при создании композиционных материалов наряду с увеличением статической и динамической прочности является снижение чувствительности к трещинам и дефектам. Уменьшение чувствительности к динамическим нагрузкам достигается за счет более быстрого поглощения энергии упругим компонентом композиционного материала, чем пластичным, который обычно накапливает повреждения. Понижение чувствительности к образованию трещин достигается путем намеренного перераспределения накапливания повреждений в таких компонентах композиционного материала, которые не снижают его несущую способность.  [c.13]


Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]

Интенсивные коррозионные разрушения характерны для конструкций, работаюш.их в жидких средах, вызывающих электрохимическую коррозию. Особенно опасный вид разрушения — коррозионное растрескивание возникает при одновременном действии коррозионной среды и статических или повторно-статических нагрузок. При этом свойства металла, определяющие его восприимчивость к коррозионному воздействию среды, непосредственно связаны с параметрами технологического процесса.  [c.440]

Разработаны принципы комплексной защиты техники [21], включающую защиту от биоповреждений составами, содержащими вещества многоцелевого назначения (обладающими свойствами ингибиторов коррозии и т. п.) и неопасными для людей. Защита осуществляется нанесением тонких пленок слабых водных и эта-нольных растворов этих веществ на поверхность эксплуатирующихся конструкций распылением в замкнутых воздушных пространствах и с ограниченным доступом воздуха составов,, содержащих легколетучие вещества с фунгицидными свойствами введением указанных веществ в растворы для химического и электрохимического полирования поверхностей металлов и нанесения покрытий в условиях производства и ремонта техники применением средств дополнительной защиты (пассивирующие растворы, рабоче-консервационные масла, легко снимаемые покрытия, содержащие биоциды) приданием биоцидных свойств растворам для очистки поверхностей (травящие, обезжиривающие, нейтрализующие растворы и пасты) сочетанием приведенных методов со статической или динамической осушкой воздуха добавлением биоцидных веществ в состав полимерных материалов, ЛКП на стадии приготовления их технологических смесей использованием биоцидных полимеров.  [c.97]


Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания. В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит  [c.236]

Повышенная температура является основным фактором, способствующим развитию язвенной коррозии под отложениями шлама. Поэтому защитные свойства карбонатных пленок, получаемых в условиях течения воды, значительно выше, чем в статических условиях. Целесообразно проводить наращивание карбонатной пленки при скорости течения воды не ниже 0,6 м/с. Качество пленки улучшается при повышении скорости до 1,2 м/с.  [c.143]

Хорошей воспроизводимостью результатов и объективностью в оценке защитных свойств жидкостей в условиях длительного хранения характеризуется лабораторный метод статического испытания на коррозию металлических образцов, основанный на контактировании образцов с каплями воды [37].  [c.127]

Некоторые компоненты ПИНС способны усиливать химическую коррозию металла. Это — жирные кислоты, неполные эфиры, серосодержащие ПАВ, окисленный петролатум, амины, амиды и имиды (по отношению к цветным металлам) и др. Поэтому в состав ПИНС-РК вводят противокоррозионные присадки, обеспечивающие им высокие противокоррозионные свойства по отношению как к черным, так и цветным металлам и сплавам в статических и динамических условиях.  [c.225]

В книге также рассматривается влияние на механические свойства как анодных, так и катодных процессов, возникающих при действии электрохимической коррозии. Приводятся новые данные о водородной хрупкости стали, вызванной коррозионной средой, и коррозионной усталости при длительном действии статического или циклического нагружения.  [c.2]

В III-2 было указано о роли дефектов в металле при его взаимодействии со средой развитие этих дефектов при механической обработке должно способствовать влиянию среды на механические свойства металла и, наоборот, устранение дефектов — препятствовать этому влиянию. В коррозионных средах особое значение приобретают неравномерно распределенные остаточные напряжения, вызываемые механической обработкой, следствием которых является появление на поверхности, соприкасающейся со средой, градиентов напряжения Хорошо известно влияние градиентов напряжения на коррозионную статическую усталость стали. Остаточные напряжения растяжения, вызванные механической обработкой, являются причиной коррозионного растрескивания и, наоборот, появление остаточных напряжений сжатия ликвидирует его. Шероховатость поверхности и наклеп приповерхностного слоя в этих случаях, очевидно, играют меньшую роль, хотя известно, что с увеличением шероховатости возрастают.потери в весе от коррозии и снижается коррозионная стойкость стали, не находящейся под напряжением.  [c.142]

Влияние коррозии при длительном статическом нагружении. При растяжении металла понижается электродный потенциал и увеличивается скорость коррозии, причем в некоторых случаях нагружение вызывает переход от равномерного растворения к наиболее опасной межкристаллитной коррозии. Наклепанные металлы часто (хотя и не всегда) дают усиленную коррозию как при работе в электролитах, так и при окислении при повышенных температурах. Особенно велико влияние коррозии на механические свойства материалов высокой твердости и прочности  [c.154]


При оценке прочности деталей, работающих в условиях статического нагружения, свойства материала детали отождествлялись со свойствами материала образца, при этом не учитывалась разница ни в форме, ни в размерах детали и образца, на котором были получены предельные напряжения, т. е. предполагалось, что при равных номинальных напряжениях опасность разрушения образца и детали, выполненной из такого же материала, как и образец, одинакова. Многочисленные эксперименты показали, что при переменных напряжениях в расчетах на сопротивление усталости необходимо учитывать ряд факторов, которые существенным образом влияют на сопротивление усталости детали в то время, как на статическую прочность они оказывают незначительное влияние. К наиболее существенным факторам относятся концентрация напряжений, абсолютные размеры поперечных сечений детали, состояние поверхности — ее шероховатость, наличие коррозии, окалины и др. Рассмотрим более подробно влияние этих факторов на сопротивление усталости.  [c.293]

Определение изменения механических свойств. Изменение механических свойств металлических материалов при статическом растяжении после коррозионных испытаний позволяет устанавливать уменьшение предела прочности (г кг мм ) и относительного удлинения (й в %). Предел прочности после коррозии позволяет также характеризовать неравномерность коррозии, так как разрушение происходит в наиболее слабом сечении образца за счет концентрации напряжений. Изменение механических свойств при коррозионных испытаниях носит условный характер чем больше начальное сечение образца, тем меньше -изменение начального предела прочности. Этот вид испытаний применим для определения влияния коррозии на изменение механических свойств листового материала и тонких труб (напри.мер, из алюминиевых и медных сплавов).  [c.72]

Эффективным способом улучшения заш,итных свойств нефтепродуктов, применяемых в качестве консервационных или рабоче-консервационных материалов, является введение в их состав маслорастворимых ингибиторов коррозии. В настоящее время известно большое число соединений, применяемых для этой цели. Предложены соединения со свободной карбоксильной или гидроксильной группой, соли аминов, карбоновых и сульфокислот и др. Активные группы ингибиторов, обладающие определенным статическим и динамическим электронными эффектами, определяют дипольный момент молекулы, а следовательно, ее полярность и поляризуемость, что, в свою очередь, определяет процессы адсорбции и хемосорбции молекул ингибиторов коррозии на металле.  [c.128]

Гальванические эффекты. Подобных эффектов можно было бы ожидать при контакте с такими металлами, как медь, но испытания показали, что коррозия в воде с небольшим содержанием перекиси водорода при 85° С ускоряется даже при контакте бериллия с нержавеющей сталью (американская сталь 347). Образцы из прессованного бериллия помещали как в статические, так н в динамические условия и скорость коррозии образцов, находившихся в контакте со сталью, была в 3—5 раз выше, чем у контрольных образцов в отсутствие такого контакта. При контакте с различными алюминиевыми сплавами гальванические эффекты были менее четко выражены. Этому не следует удивляться, учитывая близость свойств этих двух металлов.  [c.172]

Определение изменения механических свойств. Оценка коррозии путем определения изменения механических свойств материала после воздействия на него агрессивной среды является очень важной для расчетов при конструировании химической аппаратуры. Этот метод широко применяется, наряду с весовым методом и при равномерной коррозии. При статическом растяжении образца после коррозионных испытаний можно установить уменьшение предела его прочности и относительного удлинения. Изменение предела прочности после коррозии позволяет также характеризовать неравномерность коррозии, так как разрушение происходит в наиболее слабом сечении образца за счет концентрации напряжений,  [c.316]

Оценка скорости коррозии по изменению механических свойств металла после воздействия на него агрессивной среды — это один из основных методов испытаний металла на коррозию. Результаты таких испытаний можно использовать и для расчетов при конструировании химической аппаратуры. Указанный метод широко применяют и для оценки скорости равномерной коррозии. При статическом растяжении образца после испытаний на коррозию можно установить уменьшение предела его прочности и отиосительного удлинения. По изменению предела прочности можно судить и о степени неравномерности коррозии, так как разрушение происходит в наиболее слабом сечении образца, в местах концентрации напряжений.  [c.41]

Проблема влияния дефектов на прочность сварных соединений крайне сложна и многопланова. Решить ее можно, учитывая условия эксплуатации, характер дефекта и свойства металла сварного соединения. Поэтому исследования в области влияния дефектов на прочность группируются вокруг отдельных вопросов. Например, в особые направления выделяются вопросы влияния дефектов при переменных нагрузках, в условиях коррозии, при низких температурах и т. д. в зависимости от вида дефекта рассматривается влияние трещин, непроваров, пор, смещений, мест перехода от наплавленного металла к основному и т. п. проводят исследования различных материалов высокопрочных сталей, алюминиевых и титановых сплавов и т. д. В связи с таким многообразием проблем в настоящем параграфе рассматриваются только наиболее принципиальные вопросы чувствительности металла к концентрации напряжений, а именно при наличии трещин как наиболее опасных дефектов при статических нагрузках.  [c.127]


Можно отметить следующие особенности разрушений при статическом нагружении при одновременном действии механических нагрузок и рабочих сред. В условиях общей коррозии характер разрушений мало отличается от такового при статическом нагружении в нейтральной среде. В зависимости от качества металла и свойств коррозионной среда разрывы происходят по механизму вязкого или хрупкого разрушения. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что, несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразование) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой. В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва. Часто имеет ме-  [c.119]

Анализ ряда аварийных разрушений труб на магистральных нефтепроводах, имевших место в последние годы, не позволил объяснить причины этих аварий с позиций классических представлений сопромата, заложенных в основу нормированных прочностных характеристик трубопроводов или отклонением от установленных норм противокоррозионной заш,иты or почвенной коррозии. По действующим нормам в прочностных расчетах учгена работа трубопроводов под статической нагрузкой при отсутствии коррозии, проектирование же защиты от почвенной коррозии ведут без учета механических напряжений и структурно-чувствительных свойств стали.  [c.221]

Как правило, детали конструкций приборов испытывают в процессе эксплуатации умеренные или незначительные статические и динамические нагрузки поэтому к применяемым металлическим материалам не предъявляются высокие требования по механическим свойствам (за исключением износостойкости). Выбор марок сталей и сплавов обусловлен конкретными условиями работы детали и учитывает различные конструкторские требования (уровень прочностных характеристик, запас пластичности, необходимость объемного или поверхностного упрочнеиия, сопротивление коррозии, плотность, газопроницаемость, демпфирующую способность и т. д.).  [c.682]

При длительном действии статических или циклических напряжений на сталь в коррозионной среде, вызывающем явление коррозионной усталости, может происходить макроскопически хрупкое разрушение стали без признаков пластической деформации, которая могла бы фиксироваться визуально. Кроме хрупкого разрушения, происходит также коррозионное поражение поверхности металла и появление на ней более или менее толстого слоя окислов. Окисленной может быть или вся поверхность металла, или только отдельные ее места, что будет зависеть от агрессивности среды и свойств стали. Опыты показали, что длительное статическое или циклическое нагружение практически не влияет на интенсивность общей коррозии, и потеря в весе от коррозии металла, который находился в коррозионной среде как под нагрузкой, так и без нее, почти равна. Напряженное состояние стали влияет не на увеличение потерь от общей коррозии, а на усиление избирательной коррозии коррозия, в этом случае, обычно развивается как ножевая коррозия. Под таким термином мы объединяем как межкристаллитную, так и транскристаллит-ную коррозию в виде трещин, обычно перпендикулярных к действующим нормальным напряжениям.  [c.100]

Как и при травлении или коррозии ненапряженной стали при статической водородной усталости величина наводорожива-ния сильно зависит от природы среды. Ранее (раздел 2.3) было показано, что в соляной кислоте наводороживание выражено заметно слабее, чем в серной. Аналогичное явление наблюдается и в случае статической водородной усталости. На рис. 3.16, а приведены кривые падения напряжения в образце во времени при нагружении кремнемарганцовистой пружинной стали Stl40/160 (состав в % 0,60 С 0,96 Si 1,07 Мп 0,034 Р 0,025 8) 0в = 1628 МН/м2 (166,0 кГ/мм ) в виде проволоки 0 6,4 мм на величину 0,75 0в в растворах НС1. На рис. 3.16, б приведены соответствующие данные для растворов H2SO4. Разрушение в случае обеих кислот наступает тем скорее, чем больше концентрация кислоты. При одинаковых концентрациях кислот разрушение происходит быстрее в серной кислоте. Во всех случаях разрыв происходил хрупко, без образования шейки, нормально к растягивающей нагрузке. Проба на число перегибов непосредственно после разрушения проволоки, после 30-минутного прогрева при 200°С и после 10 суток выдержки при комнатной температуре показала значительное восстановление ме ханических свойств во 2- и 3-м случаях, что убедительно сви детельствует о наводороживании стальных образцов.  [c.130]

В последние годы испытания на длительную прочность часто применяют для оценки свойств металлических сплавов при комнатной температуре. Когда такие испытания проводят в воздушной атмосфере, их называют испытаниями на замедленное разрушение. Есди же образец находится под напряжением в какой-нибудь жидкой среде, например морской воде, то это — испыта-. ние на коррозию под напряжением. И в том, и в другом случае оценивают способность материала противостоять разрушению при длительном воздействии напряжений, составляющих определенную долю от предела текучести при статическом растяжении или изгибе. В качестве критерия длительной прочности обычно используют время жизни (до разрушения) при заданнОхМ напряжении, равном 0,5—0,9 от предела текучести.  [c.269]

Циклические напряжения, возникающие в деталях горячего тракта ГТУ при пусках и остановах, вызывают ускоренный износ этих деталей, зависящий также от скорости изменения температуры, перепадов температур и усилий. Свойства материалов (длите 1ьная прочность, скорость ползучести) в деталях, испытывающих циклические нагрузки, ухудшаются по сравнению с работающими в условиях статического нагружения. Из-за худшего сгорания то 1лива в пусковых режимах могут образовываться отлагающиеся на лопатках турбины агрессивные продукты неполного сгорания. При теп-лосменах повреждается поверхностный слой и облегчается проникновение кислорода и катализаторов коррозии к внутренним слоям металла. Из-за нерасчетных режимов работы создаются условия,. в которых возможны забивание форсунок, образование нагаров в камерах сгорания и т. д. Гибкие роторы ГТУ при развороте проходят через критические частоты вращения, при которых даже небольшие небалансы могут вызвать повышенные колебания, ускоряющие износ подшипников и снижающие надежность имеющихся на агрегате систем и аппаратуры. Точно так же практически все лопаточные венцы компрессора и турбины проходят при развороте ГТУ через резонансные частоты, равные или кратные частотам собственных колебаний лопаток. При таких частотах амплитуды колебаний и динамические напряжения в лопатках могут существенно возрастать. Компрессорные ступени, кроме того, могут в пусковых режимах работать с повышенными пульсациями потока и увеличенными динамическими напряжениями срывного характера. В результате создаются услевия для накопления повреждаемости лопаток и сокращения срока их службы.  [c.169]


В настоящей работе авторы обобщили литературные данные п некоторые неопубликованные собственные результаты по механическим свойствам титана и его сплавов. В предлагаемой читателю монографии рассмотрены механические свойства титана и его сплавов при различных схемах проведения испытаний — растяжение, удар, двухосное растяжение, циклические и статические нагрузки. Значительное место уделяется сравнительно мало известным проблемам замедленному разрушению, вязкости разрушения и солевой коррозии титановых сплавов. Работы последних лет показали, что указанные явления необходимо учитывать при разработке реальных конструкций во избежание внезапных разрушений. Мы хотели бы подчеркнуть, что на важность замедленного разрушения, вязкости разрушения и солевой коррозии в служебных характеристиках титана и его сплавов наше внимание обратил проф. докт. техн. наук  [c.3]

Известно, что никелирование вызывает появление в поверхностном слое металла остаточных растягивающих напряжений, доходящих до 40—50 кПмм . Никелирование часто применяется в качестве защиты стальных деталей от коррозии. Исследования И. В. Кудрявцева [70] показали, что никелирование не влияет на статические механические свойства стали предел прочности, предел текучести, удлинение и поперечное сжатие практически не изменяются. Однако никелирование снижает выносливость стали в воздухе, что объясняется действием остаточных растягивающих напряжений. Таким образом, никелирование как метод создания остаточных растягивающих напряжений в стали вполне приемлем для исследования влияния этих напряжений на адсорбционный эффект снижения выносливости.  [c.129]

Наименее опасной коррозией металлов в электролитах является равномерная, независимо от ее скорости. Однако большинство металлоконструкций подвержено неравномерной коррозии — от избирательной, определяемой свойствами металла и электролита, до коррозионномеханической, которая зависит от величины статических или динамических знакопеременных нагрузок. Наиболее опасны язвенная и межкристаллитная коррозия, коррозионное растрескивание, коррозионная усталость и хрупкость.  [c.33]

I) антифрикционные и противоизносные свойства при работе без смазки сравнимы с аналогичными свойствами смазанных баббитов 2) материал в широком интервале температур (от —200 до +280° С) практически не изменяет антифрикционных и проти-воизносных свойств 3) материал может работать без смазки, сохраняет работоспособность при попадании загрязнений в зазор между трущимися поверхностями 4) детали из материала ОО имеют малый объем и вес 5) материал устойчив против коррозии промышленными жидкостями и газами и стоек к действию растворителей 6) отсутствует опасность возникновения зарядов статического электричества 7) наличие жидкости улучшает антифрикционные свойства материала 8) не возникают скачки при трении (скольжение всегда плавное) 9) материал имеет высокую механическую прочность.  [c.209]

В монографии рассмотрены современные методы оценки склонности металлов к хрупкому разрушению, закономерности распространения трещин при статических и циклических нагрузках, охрупчивающее действие циклических нагрузок, влияние концентрации напряжений и фреттинг-коррозии на сопротивление усталости проблема создания материалов с высоким сопротивлением хрупкому разрушению различные виды волокнистых материалов и их механические свойства.  [c.4]

В настоящее время предпринимаются попытки создания банков данных, содержащих характеристики сопротивления дефорими-рованию и разрушению при статическом и циклическом нагружении металлических материалов определенного назначения характеристики, определяюпще сопротивление распространению трещин при различных видах нагружения, сопротивления коррозии, а также физические свойства [323-325].  [c.538]


Смотреть страницы где упоминается термин Коррозия Статические свойства : [c.121]    [c.30]    [c.42]    [c.138]    [c.58]    [c.2]    [c.135]    [c.175]    [c.12]    [c.8]    [c.117]   
Справочник машиностроителя Том 2 (1952) -- [ c.182 ]



ПОИСК



Коррозия свойства



© 2025 Mash-xxl.info Реклама на сайте