Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель Физические свойства

Хорошая жаростойкость никеля еще повышается при добавлении 20 % Сг. Этот сплав устойчив к окислению на воздухе до 1150 °С (один из наиболее термостойких сплавов, совмещающий отличную стойкость к окислению с хорошими физическими свойствами как при низких, так и при повышенных температурах торговое название в США нихром У). Устойчивость промышленных марок этого сплава к окислению значительно повышается, когда во время плавки в них добавляют металлический кальций в качестве раскислителя, предотвращающего окисление сплава по границам зерен. Полезны также небольшие количества циркония,  [c.207]


Кремнистые бронзы, особенно с присадками никеля, марганца, цинка и свинца, занимают особое положение среди специальных бронз. Этн бронзы по механическим свойствам приближаются к сталям, обладают превосходными физическими свойствами, немагнитны, имеют достаточно хорошие литейные, антикоррозионные свойства, хорошо свариваются и паяются мягкими и твердыми припоями.  [c.229]

Приведенные выше данные вполне достаточны для представления об изменении указанных характеристик физических свойств ирн повышении или понижении температуры для включенных в справочник сталей, содержащих никель, хром и другие элементы.  [c.10]

Во втором издании (первое — в 1980 г.) рассмотрены коррозионно-стойкие стали, а также сплавы на основе железа и никеля, применяемые для службы в агрессивных средах. Описаны их структура, механические и физические свойства в широком диапазоне температур. Приведена соответствующая нормативно-техническая документация. Изложены механизмы различных видов коррозии. Показана роль структурных факторов, легирующих и примесных элементов в формировании свойств коррозионно-стойких сталей и сплавов.  [c.320]

В послевоенные годы область применения стали и вообще сплавов на основе железа суживается, они становятся преимущественно конструкционным материалом, качество которого определяется в основном прочностью. Требования к жаропрочности, окалиностойкости и физическим свойствам материалов послевоенной техники настолько повышаются, что во многих случаях для их обеспечения потребовались сплавы на других основах — никеля, кобальта, тугоплавких металлов и пр. Однако ограничение требований к качеству стали показателями прочности не означает их упрощения. Усложнение условий работы объектов современного машиностроения и повышение их ответственности исключают возможность однозначно характеризовать сталь пределом прочности, как это делалось многие годы. Требование прочности ныне входит в критерий качества материала наряду с новым для материаловедения требованием надежности.  [c.192]

Никель и сплавы никеля Основные физические свойства никеля  [c.192]

Среди сплавов наибольшее применение для изготовления термобиметаллов находят сплавы системы железо — никель. Никель оказывает сильное влияние на физические свойства железа, резко изменяя его электропроводность, теплопроводность и коэффициент теплового расширения. Сплавы этой системы, содержащие более 20 % N 1 обладают особыми свойствами, в частности имеют особенности теплового расширения. Эти сплавы, сильно различаясь по температурным  [c.334]


В точном приборостроении и в некоторых других отраслях техники часто встречается необходимость в материале с заданным, а в некоторых случаях с особо низким коэфициентом линейного термического расширения, не зависящим от колебаний температуры окружающей среды. Элементом, наиболее сильно влияющим на эту физическую константу, является никель. Это свойство никеля обусловливает широкое его применение в железоникелевых сплавах с нормированными коэфициентами линейного расширения. Минимум термического расширения (в интервале 0 —100° С) наблюдается при содержании 30 /о N1 (фиг. 19).  [c.501]

Никель с очень многими металлами образует двойные и тройные твёрдые растворы на всём протяжении или в значительной области концентраций. Эти растворы дают сплавы с весьма ценными механическими и физическими свойствами, а и.менно жароустойчивостью, коррозионной устойчивостью, большим удельным электросопротивлением, малым температурным коэфициентом электросопротивления, большой термоэлектродвижущей силой и др. Эти свойства позволяют применять и.чке-левые сплавы для изготовления антикоррозионных изделий и оборудования, реостатов, электронагревательных приборов и печей с высокой рабочей температурой, точных измерительных приборов, термопар с большой электродвижущей силой и жаростойкостью и т. п. Сплавы Си и N1 образуют непрерывный ряд твёрдых растворов (фиг. 207). Сплавы, содержащие до 68,5% N1. при комнатной температуре немагнитны. Сплавы, содержащие 40—500/о N1, обладают наибольшим удельным электросопротивлением и термоэлектродвижущей силой п наименьшим температурным коэфициентом электросопротивления (фиг. 208). Сплавы меди и никеля обладают хорошей пластичностью.  [c.223]

Холодная деформация ведёт к изменению механических и физических свойств и к их анизотропии ввиду образования текстуры. С увеличением степени холодной деформации все показатели сопротивления деформации увеличиваются, а показатели пластичности и вязкости уменьшаются. Электропроводность изменяется особенно резко при малых степенях деформирования. Обычно холодная деформация ведёт к небольшому уменьшению электропроводности, но для некоторых металлов (молибден, никель, вольфрам) оно может быть значительным. Способность металлов к растворению различного рода реагентами и кислотами, как правило, увеличивается и иногда может стать весьма значительной. Магнитные свойства изменяются коэрцитивная сила и гистерезис увеличиваются, а магнитная проницаемость уменьшается. Отмечено также, что холодная деформация уменьшает теплопроводность, а также иногда изменяет цвет сплавов.  [c.270]

Никель повышает прочность стали в сочетании с высокой пластичностью и вязкостью. При высоких процентах содержания никеля получают стали с ценными химическими и физическими свойствами сталь, устойчивую в органических кислотах и щелочах (Ni около 20%), немагнитную сталь (Ni примерно 25%), сталь (называемую платинит), стойкую против окисления и используемую для изготовления контактов.  [c.409]

Физические свойства никеля  [c.62]

Здесь приведены данные по химическому составу, длительной прочности, механическим свойствам при растяжении и физическим свойствам некоторых суперсплавов. Это либо наиболее распространенные, либо недавно созданные перспективные суперсплавы на основе никеля, кобальта и железа, ожидающие внедрения. Приведены номинальные значения параметров для прошедших обычную для данного материала обработку. Механические свойства материалов, полученных направленной кристаллизацией и имеющих преимущественно ориентированную структуру, характеризуют, если это не оговорено особо, свойства в продольном направлении. Как отмечалось в самой книге, механические свойства некоторых сплавов могут существенно изменяться после термической или термомеханической обработки. В этом случае приведенные данные не следует использовать для инженерных расчетов, они скорее будут полезны для изучения и сравнения сплавов.  [c.352]

При кристаллизации никель образует гранецентрированную кубическую решетку и обладает физическими свойствами, схожими со свойствами железа аустенитной фазы.  [c.462]


Кроме хрома, в стали вводят никель, марганец, углерод, молибден, вольфрам, ниобий и другие элементы для придания им специальных свойств (повышенной коррозионной стойкости в агрессивных средах, более высоких механических свойств при высоких температурах, определенных физических свойств) и структуры.  [c.10]

Влияние температуры закалки, содержания никеля и азота в сталях с 23% Сг показано в табл. 128, а физические свойства и твердость сталей типа 23-4 с 0,29% Ni — в табл. 129.  [c.324]

Наиболее важными физическими свойствами, значения которых учитывают при практическом использовании материалов, являются плотность, теплоемкость, теплопроводность, тепловое расширение, электропроводность. Особые магнитные свойства железа, никеля, кобальта и их сплавов, а также ферритов, выделили их в группы материалов исключительной ценности — ферро- и ферримагнетики.  [c.60]

Все четыре модификации марганца по разному растворяют легирующие элементы —- самая высокая растворимость в 7-фазе. В а- и -модификациях марганец заметно растворяет железо до 30—40%. Большинство элементов образуют с марганцем области с ограниченной растворимостью, медь и никель образуют непрерывные ряды твердых растворов. Поэтому многочисленные структурные исследования и взаимосвязь их с физическими свойствами у-фазы выполнены на сплавах Мп—Си, Мп—Ni.  [c.19]

Помимо В111СОКОН коррозионно ) стойкости, к числу положительных свойств серебра следует отнести его высокую пластичность, исключительно высокую теплопроводность, высокую отражательную способность при сравнительно благоприятных механических и технологических показателях. По физическим свойствам серебро близко к меди, а ио механической ирочиости оно уступает никелю и нержавеющей стали.  [c.275]

Сплав, содержащий 16 % Сг, 7 % Fe и 76 % Ni (торговое название инконель 600), несколько менее жаростоек, чем нихром V, но обладает такими же благоприятными физическими свойствами, прост в изготовлении и хорошо сваривается. На воздухе его можно использовать при температурах до 1100°С. В некоторых печах устанавливают электрические трубчатые нагреватели из этйго сплава. Проходящая внутри трубки проволока из сплава 20% Сг—Ni изолирована от внешней трубки порошкообразным спеченным оксидом магния. Благодаря высокому содержанию никеля и большой прочности (образование карбидов или нитридов никеля идет медленно) этот сплав часто применяют как конструкционный материал для печей цементации и азотирования.  [c.208]

Латуни подразделяются на двойные сплавы медн с цинком, в которых содержание цинка доходит до 50 о, и многокомпонентные, имеющие в своем составе также алюминий, железо,, марганец, свинец, никель и другие добавки, повышающие механические и физические свойства латуни. Латуни обладают хорошими механическими свойствами, высоким сопротивлением коррозии, хорошо поддаются механической обработке. Их обозначают буквой Л и условным буквенным обозначением основных компонентов, а также числами, обозначающими среднее содержание меди и компонентов. Например, ЛК80-3 — кремнистая латунь, содержащая 80 меди и 3% кремния (остальное — цинк).  [c.163]

Влпяппе фазовых переходов на затухание ударной волны можно оценить, заменив в этих экспериментах я елезный образец на образец из другого металла, не испытывающего в ударной волне фазовых превращений. В качестве такого металла удобно взять никель, сходный по своим физическим свойствам с -фазой железа.  [c.293]

Никель отличается высокими механическими свойствами, коррозионной стой-хостью, тугоплавкостью и особыми физическими свойствами (ферромагнитостью, магинтострикцией, высокими электровакуумными характеристиками).  [c.251]

Наряду с совершенствованием методов плавки, важным резервом повышения прочности и ряда других эксплуатационных характеристик (особенно износостойкости) явилось легирование чугуна, получившее довольно большое распространение. Перечисленные выше тины чугунов со специальными физическими свойствами относятся к категории легированных. Для ряда наиболее ответственных марок конструкционных чугунов практиковалось легирование никелем, хромом и их сочетаниями. Большое развитие получило использование так называемых природно-легированных чугунов, представляющих собой доменные чугуны, выплавляемые из комплексных руд и содержащие легирующие элементы. К ним относятся, например, чугуны, вьшлав-ляемые из руд Орско-Халиловского месторо>кдения, имеющие в своем составе до 3% хрома и 1% никеля.  [c.206]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]


Соединение слоев металла осуществляется плакированием, т. е. прокаткой пакета карт, нагретых до сварочной температуры, или иредварптельно отлитых биметаллических слитков, или заготовок, соединенных при помощи электро-шлаковой сварки или сварки взрывом, или диффузионной сварки в вакууме. Широко применяется плакирование алюминиевых сплавов (альклед) чистым алюминием, молибдена — никелем для защиты п повышения обрабатываемости и т. д. Биметаллы получают так ке электролитическим, химическим способа пт, а такл о горячим лужением, циикованпем и т. д. Сочетание пар некоторых металлов (сплавов) создает новые физические свойства, например, у термобиметаллов (с. 77), термопар (с. 116—159).  [c.114]

Олозянистые бронзы представляют собой сплазы меди с оловом, а также более сложные сплавы с добавками цинка, свинца, фосфора, никеля и др, Оловянистые бронзы по своим механическим, литейным и прочим физическим свойствам хорошо изучены и освоены промышленностью.  [c.106]

Серебро, являющееся мягким, пластичным металлом, применяется в подшипниках наиболее мощных американских авиационных моторов. Подшипники готовятся или путём электролитического осаждения серебра на pa6o4eii поверхности вкладыша, или путём заливки. Рабочий слой подшипников, изготовляемых путём электролиза, содержит не менее 99,75<>/о серебра (американская спецификация AMS 4815). 11редварительно иа стальной корпус вкладыша из малоуглеродистой стали наносится тонкий слой меди или никеля, затем вкладыш покрывается серебром и отжигается при 500° С в течение часа. После окончательной механической обработки рабочая поверхность серебряного подшипника покрывается слоем свинца толщиной в 20—30 микрон. Вкладыши, изготовляемые путём заливки, могут содержать до 1,250/q h (американская спецификация AMS 4817), Механические н физические свойства литого серебра приведены в табл. 71. По своей  [c.217]

Поведение металла в парах воды при высоких температурах зависит от многих факторов. В первую очередь оно определяется соотношением между упругостью диссоциации соответствующего окисла металла и парциальным давлением кислорода в продуктах диссоциации воды, а также различием в тепловых эффектах образования воды и соответствующих окислов металлов. Наиболее трудно окисляется перерретым водяным паром никель и хорошо — хром. Железо занимает промежуточное положение. На практике хром, никель, титан и другие металлы менее подвержены разрушению вследствие окисления в сравнении с железом. Объясняется это различием физических свойств оксидной пленки, образующейся на разных металлах.  [c.37]

Более высокий температурный порог рекристаллизации имеют стали, сохраняющие аустенитную структуру при охлаждении до комнатной температуры. Поэтому ползучесть в сталях аустенит-ного класса проявляется при более высоких температурах и скорость ее при той же температуре меньше, чем у сталей иных структур. Стали аустенитного класса более подходят для работы с большими напряжениями при высоких температурах. Однако сохранение устойчивой аустенитной структуры при комнатной температуре возможно только при сильном легировании стали, главным образом никелем и хромом. Такие стали значительно дороже среднелегированных или легированных более дешевыми компонентами. Кроме того, при аустенитной структуре металла значительно изменяются его физические свойства, что может вызвать ухудшение работы некоторых деталей. Особенно сильно влияют на конструкцию элементов турбины резкое уменьшение теплопроводности и возрастание коэффициента линейного расширения.  [c.136]

При добавлении к свинцу 0,05% или меньшего количества лития значительно улучшаются литейные и физические свойства свинца, который становится более вязким и твердым, сохраняя удовлетворительную пластичность. В то же время значительно повышаются предел прочности при растяжении и модуль упругости. Кроме того, присутствие лития в свинце обеспечивает более мелкозернистую структуру и замедляет рекристаллизацию. Гарре и Мюллер (391 сравнивали влияние добавок различных элементов, например меди, сурьмы, олова, никеля, цинка и магния, с влиянием добавок лития на размер зерен и твердость свинца. Результаты, полученные этими исследователями, ясно показывают, что из всех испытанных элементов литий придает свинцу наиболее мелкозернистую структуру и наибольшую твердость. Кох [72] предложил применять сплавы лития и свинца, особенно те, которые содержат небольшие добавки кадмия или сурьмы, для изготовления кабельных оболочек. Он установил, что свинец, содержащий 0,005% лития, имеет значительно более высокий предел прочности при растяжении по сравнению с чистым свинцом.  [c.367]

В течение ряда лет предпринимались попытки использовать свойства литня, так же как и свойства магния, для улучшения качеств чугуиов. Было найдено, что добавка к чугуну небольших количеств лития до некоторой степени улучшает его физические свойства. Однако за последние пять лет в связи с развитием производства чугуна с шаровидным графитом было получепо много доказательств, что добавки лития к чугуну облегчают получение сфероидальной структуры, причем для получения тех же свойств, что и в случае применения магния, требуются меньшие добавки литня. Кроме того, добавление лития не сопровождается бурной реакцией, в то время как магний во избежание бурной реакции приходится добавлять вместе с медью или никелем в виде сплавов 80% меди или инкеля и 20% магния 125 — 27, 111, 1251.  [c.368]

Бериллиевые бронзы, являясь дис-персиоино-твердеющими сплавами, обладают высокими механическими, упругими и физическими свойствами. Отличаются высокой коррозионной стойкостью, жаропрочностью, циклической прочностью они устойчивы при низких температурах, не магнитны, не дают искры при ударах. Закалку бериллиевых бронз осуществляют с температуры 750—790 °С, старение — при 300—325 °С. Добавки никеля, кобальта или железа способствуют замедлению скорости фазовых пре-  [c.113]

Кремниевые бронзы обычно содержат никель или марганец. Эти сплавы отличаются высокими механическими, упругими и антифрикционными свойствами при этом не теряют своей пластичности при низких температурах. Кремниевые бронзы хорошо паяются, обрабатываются давлением при низких и высоких температурах. Они не магнитны и не дают искры при ударах. Применяются для антифрикционных деталей, пружин, подшипников, в морском судостроении, для сеток, решеток, испарителей, направляющих втулок. Механические н физические свойства безоловянных бронз, обрабатываемых давлением, приведены в табл. 47—49. Виды и свойства круглого и плоского проката из безоловян-иых бронз приведены в табл. 50, 51.  [c.114]

В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]


В современной металлургии никеля с момента ее возникновения существует как бы два самостоятельных технологических направления, что связано с использованием двух видов руд — окисленных и сульфидных, которые различаются по химическому составу и физическим свойствам. В технологических схемах переработки этих руд много кал<ущейся общности, напрнмер используют одинаковые процессы и аппараты, получают однотипные продукты. Однако в целом они принципиально не схожи друг с другом. На это оказывает влияние не только различное исходное сырье, но и конечные цели его переработки.  [c.188]

Применение сплавов железо — никель [51, с. 49] обусловлено их особыми физическими свойствами — немагнит-ностью (для сплавов, содержащих 35, 50 и 80 % Ni) и очень низким коэффициентом термического расширения (для сплавов типа инвар с 35—50 % Ni). Обычно их не используют в качестве коррозионностойких материалов, но все же их повышенная коррозионная стойкость, хотя и не сравнимая с нержавеющими сталями, способствует их более успешному применению.  [c.221]

Гальванические металлопокрытия (серебром, свинцом и никелем), так же как и металлиза-ционное покрытие нержавеющей сталью, оказались неудовлетворительными из-за их пористости. Физические свойства химически инертных материалов (графит, стекло) не допускают применения их в паровых котлах.  [c.88]

У первых двух элементов четвертого периода — калия и кальция — избыточные по сравнению с оболочкой аргона электроны занимают 45-орбитали iV-оболочки, и поэтому эти элементы относятся к подгруппам 1А и НА соответственно. Однако у следующего элемента этого периода — скандия — установленная для второго и третьего периодов закономерность не выполняется, так как внешние электроны заполняют теперь Зй-орбитали М-обо-лочки, предпочитая их орбиталям 4р. От скандия до никеля происходит постепенное заполнение З -орбиталей, а следующие два элемента — медь и цинк — имеют внешние электроны на орбиталях 4s при наличии целиком заполненной подоболочки 3d. Таким образом, медь и цинк имеют такую же валентность, как калий и кальций соответственно, однако, поскольку Зй-подоболоч-ка у этих элементов целиком заполнена, их физические свойства существенно отличаются от свойств металлов подгрупп IA и ПА, в связи с чем их обычно объединяют в отдельные подгруппы (IB и НВ). У остальных элементов четвертого периода — от галлия до криптона — идет постепенное заполнение 4р-подоболочки, и они входят соответственно в подгруппы HIB — 0.  [c.17]


Смотреть страницы где упоминается термин Никель Физические свойства : [c.511]    [c.213]    [c.235]    [c.61]    [c.139]    [c.492]    [c.527]    [c.437]    [c.236]    [c.396]    [c.86]    [c.12]   
Справочник машиностроителя Том 2 (1952) -- [ c.247 ]



ПОИСК



Никель

Никель — Свойства

Свойства Физические свойства

Свойства физические

Физические ПТЭ - Физические свойства



© 2025 Mash-xxl.info Реклама на сайте