Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн световая

Это распределение впервые вывел Бозе в 1924 г. для систем световых квантов. Эйнштейн применил его к идеальным газам. Оно известно как распределение Бозе — Эйнштейна и содержит в знаменателе слагаемое (—1) вместо (+1) в распределении Ферми — Дирака.  [c.102]

Рассеяние света в жидкостях. В 1910 г. А. Эйнштейн, исходя из идеи Смолуховского, дал количественную термодинамическую теорию рассеяния света в жидкости, учитывающую ее сжимаемость. Эйнштейн установил что интенсивность рассеянного света определяется кроме длины падающей световой волны абсолютной температурой и физическими постоянными среды — сжимаемостью, зависимостью оптической диэлектрической постоянной (обусловленной только световым полем, т. е. квадратом показателя преломления), от плотности. Эйнштейн, полагая, что рассеивающий объем и имеет форму куба, представляя флуктуацию оптической диэлектрической постоянной в виде  [c.318]


Понятие о световом кванте. Формула (15.3а) получена, как мы уже видели, на основе качественно новой — квантовой — теории, согласно которой излучение и поглощение света происходит порциями — квантами. В дальнейшем А. Эйнштейн выдвинул гипотезу о том, что не только поглощение и излучение, а также распространение света происходит дискретно, порциями. Кванты света получили название фотонов.  [c.338]

Смещение красной границы фотоэффекта. Выше мы излагали суть теории Эйнштейна и ее экспериментальное подтверждение в рамках линейной оптики — при слабых световых полях. Подобный фотоэффект можно называть однофотонным.  [c.345]

Это та самая масса, которая получилась бы по формуле Эйнштейна. Масса светового кванта не является массой покоя, а представляет собой массу, эквивалентную энергии Е. Масса покоя кванта равна нулю.  [c.393]

Рассмотрим (как это делается в статье Эйнштейна по электродинамике) пакет, или группу, плоских световых волн. Предположим, что пакет обладает энергией е и движется в положительном направлении х в системе отсчета S. По измерениям, произведенным в системе S, движущейся со скоростью Vx относительно S, волновой пакет имеет энергию  [c.396]

Установив противоречие между уравнениями преобразования Галилея и экспериментальными постулатами, Эйнштейн проанализировал представление о способах измерения пространства и времени. По отношению к измерению пространства классическая механика пользовалась вполне реальными приемами сравнения измеряемых величин с образцовым эталоном (например, сравнение с эталонным метром или с длиной световой волны), причем возможность однозначных измерений обеспечивалась существованием жестких тел (не изменяемых при определенных условиях температуры и т. д.).  [c.455]

Уравнение Эйнштейна. Гипотеза световых квантов  [c.638]

Наличие вторичных процессов позволяет понять чрезвычайно большое разнообразие в скорости различных фотохимических процессов, т. е. различие в значении коэффициента к, меняющегося при переходе от одной реакции к другой в тысячи и даже сотни тысяч раз. Общие закономерности, отличающие действие света, нужно, конечно, искать в первичных процессах, которые, собственно говоря, и должны были бы называться фотохимическими. Эйнштейн (1905 г.), высказав гипотезу световых квантов, указал крайне простой закон, справедливый для (первичных) фотохимических процессов каждому поглощенному кванту /гv соответствует превращение одной поглотившей свет молекулы (закон эквивалентности). Опытная проверка этого закона возможна лишь для таких реакций, в которых мы в состоянии разделить первичные и вторичные процессы, или где вторичные процессы вообще не имеют места. Естественно полагать, что роль вторичных явлений особенно велика в наиболее бурно протекающих процессах. Действительно, в идущем со взрывом процессе образования хлористого водорода первичным является лишь расщепление хлора. Бурное же протекание процесса  [c.667]


В действительности оба эксперимента существенно различаются. В первом из них на часы В действует сила, заставляющая их изменять свою скорость, а на часы А сила не действует. Во втором эксперименте положение обратное часы В свободны от воздействия силы, а часы А это воздействие испытывают. Физические условия, в которых находятся различные часы, в обоих экспериментах различны и приводят к разным следствиям в отношении показаний часов. Специальная теория относительности, имеющая дело с прямолинейным и равномерным движением, не дает объяснения действия ускорения на ход часов — это объяснение может быть дано лишь в рамках общей теории относительности. Выводы, к которым приводит преобразование Лоренца, находят ясное объяснение в постулатах Эйнштейна. Физически все основано на том, что скорость света не бесконечна, а измерение длин и синхронизация часов в движущихся относительно друг друга системах в принципе могут производиться только с помощью световых сигналов.  [c.457]

В 1905 г. Эйнштейн показал, что все основные закономерности фотоэффекта можно объяснить, если предположить, что свет поглощается такими же квантами г = к, какими он, по предположению Планка, испускается. Такие световые кванты впоследствии получили название фотонов.  [c.159]

Фотоны. Выход из кризисного положения, сложившегося в физике света после открытия и исследования явления фотоэффекта, был найден в 1905 г. А. Эйнштейном. Он выдвинул гипотезу о существовали световых частиц, которые в дальнейшем получили название фотонов. Так как максимальная энергия фотоэлектронов увеличивалась с ростом частоты v света, Эйнштейн установил, что энергия Е пропорциональна частоте света  [c.118]

А. Эйнштейном искривление световых лучей в сильном поле тяготения Солнца. Этот эффект был экспериментально подтвержден в 1919 г. (см. б).  [c.138]

Проблемы теплового излучения 36 2.2. Формула Планка 42 2.3. Световые кванты Эйнштейна 46 2.4. Вывод формул Рэлея -Джинса и Планка по современной теории (переход от световых волн к фотонам) 52  [c.15]

Корпускулярные модели а оптике прошли длинный путь развития — от световых корпускул Ньютона до квантов анергии Планка, световых квантов Эйнштейна ц, наконец, фотонов.  [c.17]

Световые кванты Эйнштейна  [c.46]

И вот Эйнштейн делает вывод Монохроматическое излучение в смысле теории теплоты ведет себя (в пределах области применимости закона излучения Вина) так, как будто оно состоит из взаимно независимых квантов энергии . Забегая вперед, заметим, что впоследствии, говоря о световых квантах, Эйнштейн уже не вводил ограничения областью высоких частот.  [c.47]

Уравнение Эйнштейна. Полагая, что излучение не непрерывно, а состоит из квантов энергии йсо, Эйнштейн сделал вывод, что оно не только испускается, но и поглощается в виде квантов. При облучении вещества светом его электроны получают энергию не непрерывно, а порциями. Электрон полностью поглощает энергию одной порции. Так что ни о каком раскачивании электрона, ни о каком постепенном накоплении им энергии, достаточной для вылета из вещества, не может быть и речи. Если энергия Йсо одной порции достаточна для освобождения электрона из данного материала, то фотоэффект наблюдается, причем, естественно, без запаздывания . В этом случае чем больше интенсивность света (чем больше в световом пучке квантов), тем чаще будут происходить акты поглощения кванта электроном и тем, следовательно, больше будет сила фототока. Если же энергии одного кванта недостаточно, чтобы освободить электрон, то фотоэффекта не будет, сколько бы таких квантов ни падало на вещество. Подразумевается, что конкретный электрон может поглотить сразу только один квант вероятность же одновременного поглощения электроном двух (или более) квантов ничтожно мала. Таким образом, возникновение фототока зависит не от определяющего интенсивность света количества квантов в световом пучке, а от энергии кванта со и, следовательно, от частоты света.  [c.49]

Световые кванты Эйнштейна. Дискретность излучения понималась вначале как квантование энергии излучения. Позднее, в 1916 г., Эйнштейн сделал следующий шаг и показал, что каждая порция излучения характеризуется не только энергией е=А(о, но и импульсом  [c.50]

Путь, пройденный оптикой в исследовании природы света,— от световых корпускул Ньютона до световых квантов (фотонов) Эйнштейна — напоминает виток спирали. Оптика снова пришла к корпускулярной концепции, но, разумеется, уже на новом уровне. Фотоны принципиально отличаются от ньютоновских световых корпускул прежде всего тем, что отнюдь не исключают волновых представлений. Уже в свойствах отдельного фотона отражается диалектическое единство корпускулярной и волновой концепций. Что же касается фотонных коллективов, то при определенных условиях они особенно ярко проявляют волновые свойства, обнаруживаемые в явлениях интерференции и дифракции света. Забегая вперед, заметим, что интерференционная картина, как оказалось, может наблюдаться и тогда, когда фотоны проходят через интерферометр поодиночке. Понимание этого принципиального факта возможно лишь на основе представлений квантовой физики. На этих вопросах мы специально остановимся в ч. И. Пока же рассмотрим свойства фотона (некоторые из них уже отмечались ранее), а затем поговорим о свойствах фотонного коллектива или, иными словами, о поведении фотона в коллективе.  [c.78]


Однако, как показал А. Эйнштейн, весь вопрос гораздо глубже. Дело не в том, что какие-то одни часы начинают врать . Свойства времени и способ его отсчета, применяемый в физике, — по часам, синхронизованным между собой световыми сигналами, — таков, что результат отсчета времени всегда относителен он зависит от выбора системы часов. А так как все системы часов равноправны, у нас нет никаких оснований выделять ту или иную из них, и поэтому отсчету времени нельзя придать абсолютного характера. Следовательно, и понятие одновременности является относительным. В том виде, как оно применялось в классической физике, как абсолютное понятие, оно не имело определенного содержания, — вернее, в различных случаях в него вкладывалось различное содержание. Именно поэтому классическая физика пришла к принципиальным противоречиям, разрешить которые удалось только теории относительности, после того как было уточнено понятие одновременности. Пересмотр всего вопроса об отсчете времени и, в частности, об одновременности событий является одной из наиболее глубоких реформ, которые внесла в физику теория относительности.  [c.272]

Гравитационная теория Эйнштейна 372 Гравитационное искривление световых лучей 378  [c.401]

Накопленные в последние годы экспериментальные доказательства, по-видимому, решительно свидетельствуют в пользу действительного существования световых квантов. Кажется все более и более правдоподобным, что фотоэлектрический эффект, являющийся основным механизмом обмена энергией между излучением и материей, всегда подчиняется эйнштейновскому закону фотоэффекта. Опыты по фотографическим действиям света и недавние результаты А. Комптона об изменении длины волны рассеянных рентгеновских лучей было бы трудно объяснить без использования представления о световых квантах. С теоретической стороны представления Бора, которые подтверждаются столь многими экспериментальными доказательствами, основаны на том постулате, что атомы могут испускать или поглощать лучистую энергию частоты V только ограниченными количествами, равными /г к теория Эйнштейна флуктуаций энергии в черном излучении также с необходимостью приводит к подобным представлениям.  [c.631]

В настоящей статье принято, что свет состоит по существу из световых квантов, каждый из которых обладает одной и той же чрезвычайно малой массой. Математически показано, что преобразование Лоренца—Эйнштейна совместно с квантовыми соотношениями приводит к необходимости связать движение тела и распространение волны и что это представление дает физическую интерпретацию аналитических условий устойчивости Бора. Дифракция является, по-видимому, совместимой с обобщением ньютоновской динамики. Далее, оказывается возможным сохранить как корпускулярный, так и волновой характер света и дать с помощью гипотез, подсказываемых электромагнитной теорией и принципом соответствия, правдоподобное объяснение когерентности и интерференционных полос. Наконец, показано, почему кванты должны входить в динамическую теорию газов и почему -закон Планка является предельной формой закона Максвелла для газа световых квантов.  [c.639]

Позднее Эйнштейном было введено в физику понятие о световых квантах — фотонах. Созданная на этой базе квантовая статистика фотонов Бозе—Эйнштейна явилась основой современной теории излучения, из которой, t в частности, вытекает и формула закона излучения Планка.  [c.17]

По мысли Эйнштейна вся энергия, полученная электроном, доставляется ему юветом в виде определенной порции hv, величина которой зависит от частоты света световой квант), и усваивается им целиком. Таким образом, электрон не заимствует энергию от атомов вещества катода, благодаря чему природа вещества не играет никакой роли в определении ё.  [c.638]

Из условия пространственной синфазности (222.4) видно, что фазы ф/ волн SJ должны изменяться в зависимости от положения излучающегося атома по такому же закону, по которому изменяется фаза в световой волне. Это означает, что агентом, фазирующим излучение атомов, должна быть световая же волна. Вместе с тем, в гл. XXXIII указывалось, что для микроскопического описания спектральных свойств теплового излучения А. Эйнштейн ввел представление о вынужденном испускании. Одно из основных свойств вынужденного испускания состоит в том, что волны, излучаемые атомом в этом процессе, имеет такую же частоту и такую же фазу, что и действующая на атом волна. Благодаря указанному свойству, как будет показано в 223, фазнровка излучения удаленных атомов может обеспечиваться вынужденным испусканием.  [c.774]

Теория получает признание тогда, когда на ее основе находят объяснение непонятные факты или подтверждаются предсказываемые ею новые явления. Так было и с общей теорией относительности. Решая уравнения (92), Эйнштейн получил значение смещения перигелия Меркурия, точно соответствующее многовековым наблюдениям. Наиболее убедительным доказательством справедливости теории явилось экспериментальное подтверждение предсказанного Эйнштейном искривления световых лучей в сильном поле тяготения Солнца. Поскольку фотоны также обладают массой [см. (91)], они должны притягиваться Солнцем, что приводит к изменению кажущегося положения звезд, наблюдаемых вблизи Солнца во время солнечного затмения (рис. 38). В 1919 г. ученые выполнили измерения смещения положения звезд во время солнечного затмения. Этот же участок неба был сфотографирован тогда, когда Солнце упшо далеко от него. Наложение снимков четко 142  [c.142]

А. Эйнштейн, который первым расширил содержание понятия квантов и првдал им новую физическую трактовку. Мы уже обсуждали выше (см. 5) трактовку фотоэффекта, предложенную А. Эйнштейном. Теперь ясно, в какой обстановке она появилась. Это была первая (после Планка) работа, в которой новая физическая постоянная А была применена для объяснения физических явлений. Эйнштейн ввел в физику представление о фотонах (световых квантах), как о самостоятельных частицах света с энергией E=hv. Вместе с этим в физику вошли представления  [c.158]


В начале XX в. принципы классической механики подвергались критике, в результате чего появилась релятивистская и квантовая механика. Не входя в подробности, можно указать, что принципы теории относительности, развитые Дж. К. Максвеллом (1831—1879), X. А. Лоренцем (1853—1928), А. Пуанкаре (1854— 1912) и А. Эйнштейном (1879—1955), коренным образом меняют наши обычные представления о пространстве и времени. Теория относительности методом научного анализа еще раз подтвердила справедливость марксистско-ленинского положения о единстве движущейся материи со временем и пространством. В релятивистской механике время не является универсальным понятием, а имеет л1естное значение. Связь наблюдателей, находящихся в различных движущихся системах, осуществляется при помощи световых сигналов, причем постулируется, что ito-рость света — универсальная постоянная для всех систем. Релятивистская механика не отменяет классическую механику, а лишь указывает па ее ограниченность и на несправедливость ее законов там, где скорость движения тела соизмерима со ско-росгью света.  [c.143]

Так, Планк предполагал, что излучение только испускается порциями. Он связывал это с особенностями механизма испускания излучения атомами и молекулами вещества. Само же излучение существовало, как полагал Планк, не в виде квантов, а в виде непрерывной сущности , в виде непрерывных электромагнитных волн в пространстве. Однако такие представления казались не вполне состоятельными, так как в этом случае непрерывная световая энергия должна была бы где-то ждать возможности порциоиного поглощения атомами вещества иначе говоря, непрерывная энергия должна была бы каким-то образом разбиваться на кванты перед поглощением (такое возражение выдвигал Пуанкаре). Под влиянием подобной критики Планк выдвинул так называемую гибридную гипотезу, согласно которой излучение испускается квантами, а поглощается непрерывно. Однако допущение столь разных физических механизмов испускания и поглощения излучения не могло не казаться довольно странным. Напрашивался единственный выход признать, что само излучение не непрерывно, а состоит из отдельных порций (квантов), Сделать такой вывод Планк все же не решился. Это сделал Эйнштейн.  [c.46]

К представлениям о световых квантах привели два направления исследований. Первое связано с проблемой теплового излучения, второе — с атомными спектрами. Первоначально эти направления развивались независимо друг от друга. Так было до 1916 г., когда появились фундаментальные работы Эйнштейна Испускание и поглощение излучения по квантовой теории и К квантовой теории излучения . В первой работе, опираясь на теорию Бора, Эйнштейн рассмотрел задачу о взаимодействии равновесного излучения с равновесной системой испускаюш,их и поглош,ающих атомов. Он показал, что для получения формулы Планка надо наряду с поглош,ением и спонтанным испусканием рассмотреть дополнительный процесс испускания, который может быть назван индуцированным (вынужденным). Во второй работе обоснована необходимость учитывать изменение импульса атома при испускании или иоглощении им светового кванта здесь же сделан вывод, что импульс светового кванта равен /ioj/с.  [c.68]

Об импульсе фотона. Как уже отмечалось, Эйнштейн предполагал, что наблюдаемое в отсутствие излучения распределение (3.2.5) сохраняется и при наличии излучения. В работе К квантовой терии излучения Эйнштейн показал, что это предположение имеет интересный физический смысл. Он рассмотрел два разных механизма спонтанного испускания 1) излучение испускается в виде расходящейся от атома во все стороны сферической электромагнитной волны, и тогда импульс атома-излучателя на меняется 2) излучение испускается в виде кванта света, и тогда атом-излучатель получает всякий раз импульс отдачи, причем у разных атомов эти импульсы будут иметь случайное направление. Оказывается, что равновесие системы атомов, взаимодействующих с излучением, не нарушается только при условии, что имеет место второй из указанных механизмов спонтанного испускания и при этом импульс кванта света равен iiail . Таким образом, Эйнштейн привел дополнительное подтверждение существования световых квантов, характеризующихся наряду с энергией 1ъи> также импульсом Асо/с.  [c.73]

С точки зрения Эйнштейна эфир вообще должен быть исключен из рассмотрения, и при расчете путей, проходимых световыми сигналами, следует принимать во внимание толыю движение участвующих в опыте приборов,а не эфира, т.е. движение зеркал и приборов, регистрирующих приход сигналов. Поэтому приведенные в 60 расчеты путей распространения продольного и поперечного сигналов одинаково применимы во всех инерциальных сисгемах отсчета. А значит, если во всех инерциальных системах отсчета (вследствие их полного равноправия) опыт Майкельсона должен давать один и тот же (отрицательный) результат, то с точки зрения Эйнштейна эффект сокращения размеров твердого тела должен существовать при движении тела относительно всякой инерциальной системы отсчета.  [c.256]

Для объяснения фотоэффекта Эйнштейн предположил (1905), что 1ЮГОК энергии световой волны не являе1ся непрерывным, а представляет собой поток дискретных порций энергии, называемых квантами или фотонами.  [c.21]

А. Эйнштейн установил в 1905 г., что кинетическая энергия вылетающих под действием света электронов не зависит от интенсивности света, а онреде-тяется лишь функцией частоты световых колебаний m(n)V2 = Av + ф, где hv — энергия фотона, ф — работа выхода электрона. Если hv = ф, т. е. если энергия фотона равна работе выхода, то электрон покинет тело с нулевой кинетической энергией. Если же hv ф, то электрон будет обладать некоторой дополнительной кинетической энергией, равной hv — ф. В случае, когда /гу< ф, фотоэффекта не произойдет. Значение /iv = ф называют пороговым.  [c.135]

Это соответствует отклонению светового луча под действием силы тяжести в элементарной ньютоновой схеме. Отклонение светового луча было предсказано Эйнштейном на основе принципа эквивалентности . Этот принцип, бывишй руководящей идеей ранних работ Эйнштейна, помог ему осознать, что линейный элемент Минковского не может сохраниться при наличии гравитации. Как видно из наших выкладок, отклонение порождается членом линейного элемента, содержащим dx , т. е. компонентой 44.  [c.380]

От работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся к 1927 окончат. формулировкой К. м. в двух её формах. Первая начинается с работы А. Эйнштейна (1905), в к-рой была дана теория фотоэффекта. Развивая идею Планка, Эйнн1тейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, т. е. что дискретность присуща самому свету свет состоит из отд. иорций — световых квантов, названных ноздиее фотонами. Энергия фотона E—h. На основании этой гипотезы Эйнштейн объяснил установленные на опыте закономерности фотоэффекта, к-рые противоречили классической (базирующейся на классич. электродинамике) теории света.  [c.274]

Из Паули теоремы следует теперь, что для п(ь лей целого спина, полевые функции к-рых осуществляют однозначное представление группы Лоренца, при квантовании по Бозе — Эйнштейну коммутаторы [и (z), м( /)] или [м(л ), ( (у)] пропорц. ф-ции D x—y) и исчезают вне светового конуса, в то время как для осуществляющих двузначные представления полей полуцелого сниыа то же достигается для антикоммутаторов [и(х), и у)] (или [i (a ), (у)] + ) при кваа- товании по Ферми — Дираку. Выражаемая ф-лами (6) или (7) связь между удовлетворяющими линейным ур-ниям лоренц-ковариантными ф-циями поля и или v, v и операторами л, ai рождения и уничтожения свободных частиц в стационарных квантовомеханич. состояниях есть точное магем. описание корпускулярно-волнового дуализма.  [c.302]



Смотреть страницы где упоминается термин Эйнштейн световая : [c.639]    [c.134]    [c.144]    [c.158]    [c.50]    [c.103]    [c.279]    [c.373]    [c.265]    [c.130]    [c.464]   
Единицы физических величин (1977) -- [ c.121 , c.122 , c.191 , c.242 ]



ПОИСК



Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте