Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бозе-Эйнштейна

Автор, широко образованный педагог, прекрасно сознавая огромное значение статистической термодинамики для решения технических задач, показал формы и методы использования основных результатов статистики Больцмана и квантовых статистик Бозе — Эйнштейна и Ферми — Дирака при рассмотрении важнейших понятий термодинамики, как например внутренней энергии, теплоемкости, энтропии и т. д.  [c.7]


Распределение Бозе — Эйнштейна [17]  [c.100]

Это распределение впервые вывел Бозе в 1924 г. для систем световых квантов. Эйнштейн применил его к идеальным газам. Оно известно как распределение Бозе — Эйнштейна и содержит в знаменателе слагаемое (—1) вместо (+1) в распределении Ферми — Дирака.  [c.102]

Общее число различных способов распределения для тех случаев, когда выполняются условия Бозе — Эйнштейна,  [c.103]

Хотя тот же общий принцип применен к распределениям Ферми — Дирака и Бозе — Эйнштейна, явное алгебраическое выражение для X не может быть получено.  [c.104]

Изложенные положения относятся не только к системе элементарных тождественных частиц, но и к системам, состоящим из тождественных сложных частиц, например к атомным ядрам. Ядра, состоящие из четного числа нуклонов, обладают целым спином и подчиняются статистике Бозе—Эйнштейна. Ядра, содержащие в своем составе нечетное число нуклонов, обладают полуцелым спином и подчиняются статистике Ферми—Дирака.  [c.117]

Бозе—Эйнштейна статистика 117  [c.392]

Действительно, из теоретической физики известно, что тождественные частицы с целым (в том числе с нулевым) спином подчиняются статистике Бозе — Эйнштейна. Волновая функция такой системы симметрична, т. е. не меняется при перестановке двух произвольно выбранных частиц системы.  [c.276]

Бозе-Эйнштейна статистика 276 Бора постулаты 61  [c.714]

Это выражение определяет также распределение фононов. подчиняющихся статистике Бозе — Эйнштейна.  [c.162]

В отличие от электронов, имеющих полуцелый спин, куперов-ская пара — это, по существу, новая частица, имеющая спин, равный нулю. Такие частицы подчиняются статистики Бозе — Эйнштейна. Для них не существует запрета Паули. Бозе-частицы обладают замечательным свойством они в сколь угодно большом количестве могут занимать одно состояние, причем, чем больше их оказывается в этом состоянии, тем труднее какой-либо из частиц выйти из данного состояния. Происходит так называемая бозе-конденсация.  [c.269]

Возбуждения значительно меньшей энергии образуются в том случае, когда все спины повертываются лишь частично. Такая спиновая волна схематически изображена на рис. 10.12. Из рисунка видно, что спиновые волны представляют собой колебания относительной ориентации спинов в кристалле. Они сходны с упругими волнами в кристалле (фононами). Спиновые волны также квантованы. Квант энергии спиновой волны получил название магнон. При повышении температуры число магнонов возрастает, а результирующий магнитный момент ферромагнетика соответственно уменьшается. При малой плотности магнонов взаимодействие их друг с другом можно не учитывать и, следовательно, магноны можно считать идеальным газом. Газ магнонов, так же как и газ фононов, подчиняется. статистике Бозе — Эйнштейна. Если известны  [c.340]


Бозе — Эйнштейна распределение 162 Борна — Кармана граничные условия  [c.382]

Распределение Бозе — Эйнштейна 162  [c.383]

Такой коллектив описывается распределением Бозе — Эйнштейна (квантовая статистика Бозе — Эйнштейна)-.  [c.82]

В-третьих, как следует из (3.4.13), условие невырожденности (3.4.9) для фотонных коллективов не выполняется. Это означает, что для фотонного газа невозможен переход к классической статистике. Фотонный газ всегда вырожден он всегда описывается квантовой статистикой Бозе — Эйнштейна.  [c.83]

В своей первой работе Лондон отметил, что процесс конденсации идеального газа Бозе—Эйнштейна будет сопровождаться появлением максимума теплоемкости при температуре, при которой по мере охлаждения частицы начнут переходить в состояние с нулевым импульсом. Этот процесс будет переходом третьего рода, при котором пи энергия, ни теплоемкость пе претерпевают разрывов (фиг. 19). Тот факт, что аномалия теплоемкости жидкого гелия является в действительности переходом второго рода, не должен казаться удивительным, если иметь в виду существенное различие между жидкостью с сильно взаимодействующими атомами и идеальным газом  [c.800]

Жидкий Не . Имеется еще одна область исследований, оказавшая глубочайшее влияние на проблему гелия, причем значение полученных I этой области результатов нисколько не уступает значению любых отмеченных выше исследований. Мы имеем в виду изучение свойств легкого изотопа гелия с атомным весом 3. В противоположность Не, подчиняющемуся статистике Бозе—Эйнштейна, Не имеет нечетное число нуклонов и подчиняется поэтому статистике Ферми—Дирака. В связи с предположением Ф. Лондона о том, что .-явление происходит из-за конденсации импульсов жидкости Бозе — Эйнштейна, эта разница в статистиках придает особое значение экспериментам с жидким Не .  [c.811]

Воспользовавшись приближением идеального газа, которое приводит к правильному порядку величины температуры конденсации Бозе —Эйнштейна I случае тяжелого изотопа, можно показать, что изменения в восприимчивости произойдут при вполне достижимых температурах. Для газа Ферми— Дирака с атомной массой Не и плотностью жидкого Не температура вырождения равна 5° К. Однако первые измерения, проведенные в области температур выше 1°К, не дали указании на какое-либо упорядочение спинов  [c.816]

Обзор двух важнейших теоретических подходов к проблеме гелия—теории конденсации газа Бозе—Эйнштейна, развитой Ф. Лондоном, и теории Ландау, основанной на рассмотрении энергетического спектра фононов и ротонов,—помещен в разделе 1. Соответствующие экспериментальные  [c.873]

Идеальный газ Бозе—Эйнштейна. Конденсация в пространстве импульсов наступает в случае, если число атомов превосходит  [c.874]

Если при постоянном объеме конденсация идеального газа Бозе—Эйнштейна происходит без разрыва как энергии, так п теплоемкости [как видно из формулы (42.17), только производная теплоемкости по температуре претерпевает здесь разрыв], то этот процесс при постоянном давлении становится переходом первого рода. Из формулы (42.13) следует, что на (Р, 7 )-диаграмме имеется линия переходов с критическими значениями давления, определяемыми этой формулой. При давлениях, больше критических, объем скачком уменьшается от до нуля [см. формулу (42.3)]. Этому  [c.875]

Совокупность тождественных частиц может находиться в состояниях только с определенным видом симметрии, т. е. система находится либо в симметричном состоянии (волновая функция симметрична), либо в состоянии антисимметричном (волновая функция антисимметрична). Свойства симметрии обусловлены природой самих частиц, образующих систему, и они сохраняются во времени (так как НР12 — 12 = О)- Это означает, что если в начальный момент времени система находилась в симметричном или антисимметричном состоянии, то никакие последующие воздействия lie изменяют характера симметрии системы. Состояния разного типа симметрии не смешиваются между собой. Различие в симметрии волновых функций или ij) ) проявляется Б различии статистических свойств совокупности частиц, и это оказывается связанным со спином частиц. В. Паули удалось показать, что частицы, обладающие целым спином О, ], 2,... (л-мезоны s = О, К-ме-зоны S = О, фотоны S = 1), описываются симметричными волновыми функциями и подчиняются статистике Бозе—Эйнштейна. Эти частицы часто называют бозонами. Согласно статистике Бозе— Эйнштейна, в каждом состоянии может находиться любое число частиц (бозонов) без ограничения. Частицы же с полуцелым спином Va, /2,. . . (электроны — S = V2, протоны — s = Vj, нейтроны — S = мюоны — S = Vj) — описываются антисимметричными волновыми функциями и подчиняются статистике Ферми— Дирака. Часто их называют фермионами. Согласно статистике Ферми—Дирака в каждом состоянии, характеризуемом четырьмя квантовыми числами (п, /, т, s) (полным набором), может находиться лишь одна частица (принцип Паули).  [c.117]


Спин — собственный момент количества движения частицы, измеряемый в единицах //, 17. Одни частицы обладают целым спином и подчиняются статистике Бозе—Эйнштейна (бозоны), другие— иолуцелым спином и подчиняются статистике Ферми—Дирака (фермиоиы).  [c.341]

При температурах, близких к абсолютному нулю, в свойствах жидкости на первый план выдвигаются квантовые эффекты в таких случаях говорят о квантовых жидкостях. Фактически лишь гелий остается жидким вплоть до абсолютного нуля все другие жидкости затвердевают значительно раньше, чем в них становятся заметными квантовые эффекты. Существуют, однако, два изотопа гелия —" Не и Не, отличающиеся статистикой, которой подчиняются их атомы. Ядро Не не имеет спина, и вместе с ним равен нулю и спин атома в целом эти атомы подчиняются статистике Бозе — Эйнштейна. Атомы же Не обладают (за счет своего ядра) спином /2 и подчиняются статистике Ферми — Дирака. Это различие имеет фундаментальное значение для свойстй образуемых этими веществами квантовых жидкостей в первом случае говорят о квантовой бозе-жидкости, а во втором — о ферми-жидкости. В этой главе будет идти речь только о первой из них.  [c.706]

Фононы подчиняются статистике Бозе — Эйнштейна, поэтому среднее число фононов в одной яче ше фазового пространства объемом 2nUf с энергией Е определяется выражением (5.73). Тогда полная энергия фононов в кристалле  [c.176]

Фермионами называются частицы, обладающие полуцелым спином (электроны, протоны и т. п.). Свое название они получили от статистики Ферми—Дирака, которая описывает свойства кол1ек1 ввов таких частгщ. Частицы, обладающие целым спином (или спином, равным нулю), подчиняются статистике Бозе— Эйнштейна я называются бозонами. Принцип Паули запрещает находиться в одном энергетическом состоянии двум фермвонам с одинаковыми квантовыми числами. Свойства бозонов таковы, что вероятность нахождения их а состоянии с данной энергией тем больше, чем больше частиц же находится в этом состоянии.  [c.192]

Для равновесного газа квазичастиц функция v e) имеет универсальный вид, зависящий от характера статистик квазичастиц данного типа (статистика Бозе — Эйнштейна или статистика Ферми — Дирака). Так, для фононов она описывается выражением (6.1.13), а для электронов проводимости и дырок выражением (6.2.1). Что же касается спектра G,(e), то для квазичастиц индивидуального происхождения (электроны проводимости и дырки) он описывается выражением (6.2.6) с заменой электронной массы на определяемую структурой данного кристалла зс х зективную массу электрона проводимости или дырки, а для квазичастиц коллективного происхонадения (фононы, магноны и другие) он существенно зависит как от типа квазичастиц, так и от конкретной рассматриваемой периодической структуры.  [c.148]

Р( занов и Черепанов [73] рассчитали теплопроводность ферромагнитных металлов, считая спиновые волны подчиняющимися статистике Бозе— Эйнштейна. Роль спиновых волн состоит главиыд образом в том, что они рассеивают электроны, уменьшая электронную теплопроводпость. С формальной стороны эта теория подобна изложенной в и. 14.  [c.255]

Отметим, что большой диамагнетизм наблюдается только, когда длина волны электронов велика по сравнению с глубиной проникновения поля. Волновые функции электронов в этом случае размазываются на расстояния, большие по сравнению с глубиной проникновения поля. В этом смысле предельным случаем является идеальный газ Бозе — Эйнштейна заряженных частиц. Ниже температуры конденсации некоторая часть электронов находится в самом нижнем состоянии, причем волновая функция этого состояния размазывается на весь объедг. Это соответствует в рассмотренном выше примере пределу и мы получаем обычную  [c.721]

Двухжпдкостная модель. Непосредственный результат работы Лондона оказался довольно неожиданным даже для самого автора она привела к созданию феноменологического описания гелия, которое, несмотря на свой сомнительный физический смысл, оказалось исключительно полезным в качестве рабочей гипотезы. Тисса был хорошо знаком с первоначальной работой Лондона-, он сформулировал свое макроскопическое описание гелия как копденсированного газа Бозе—Эйнштейна, ставшее известным под названием двухжидкостной модели [38]. По его предположению, при охлаждении жидкого гелия нинче температуры Х-перехода начинается конденсация атомов в состояние с нулевым импульсом. Никакого выделения новой фазы не происходит, поскольку процесс конденсации затрагивает только скорости атомов и никак не связан с положением в пространстве атомов, находящихся в наинизшем состоянии. Не И рассматривается как смесь двух полностью взаимоироникающих жидкостей, которые обладают различными теплосодержаниями, но состоят из одних и тех же частиц— атомов гелия.  [c.801]

Избежав трудных проблем, связанных со строгим рассмотрением взаимодействующей жидкости Бозе—Эйнштейна, Тисса показал, что при определенных дополнительных предположеп1гях его модель не только представляет собой удобный отправной пункт для изучения запутанных явлений в жидком гелии, но что с ее помощью можно предсказывать и новые эффекты [39]. Эти дополнительные предположения касались поведения сконденсированной и обычной частей жидкости. По Тисса, эти части жидкости характеризуются различными гидродинамическими свойствами, а также и разными теплосодержаниями. Если в отношенни неконденсированной нормальной жидкости принимается, что она сохраняет свойства обычной жидкости или пара, то о сконденсированной сверхтекучей жидкости предполагается, что она не может участвовать ни в каких диссипативных процессах. Поэтому, например, колеблющийся в Не II диск будет испытывать трение со стороны нормальной жидкости, тогда как тонкий капилляр позволяет сверхтекучей жид-  [c.801]

Аномально большой перенос тепла в Не II также хорошо объясняется в рамках двухжидкостной модели. Явление это во многом подобно термо-механлчсскому эффекту, за исключением того, что связь между двумя сосудами осуществляется не по тонкому капилляру, а по достаточно широкой трубке, по которой возможно течение нормальной жидкости без чрезмерного трения. Подводимая к одному из сосудов мощность будет вызывать увеличение концентрации нормальной компоненты, что приведет к появлению течений жидкости для восстановления равновесно11 концентрации. Однако в этом случае течение сверхтекучей жидкости но направлению к нагревателю будет компенсироваться противотоком нормальной жидкости ц обратном направлении. Энергия, которую необходимо сообщить единице массы сверхтекучей жидкости для перевода ее в нормальную жидкость, равна полной тепловой энергии при этой температуре, так как энергия конденсата Бозе—Эйнштейна равна нулю. Поэтому-то противотоки в жидком Не II являются особым внутренним конвективным механизмом, переносящим огромную тепловую энергию. Более того, весьма правдоподобно, что такой сложный процесс передачи тепла можно использовать для объяснения наблюдаемой зависимости теплопроводности Не II от градиента температуры.  [c.802]


Несомненный успех двухжидкостной модели в форме, предложенной Тисса, вызвал тенденцию приписывать ей часто больший физический смысл, чем тот, которого вообще можно было от нее требовать. Не говоря уже о том, что в атомных масштабах разделение атомов I от атомов II недопустимо с точки зрения квантовой механики, в этой модели должны возникать и другие трудности. Представление о том, что при абсолютном нуле гелий должен состоять целиком из атомов с нулевым импульсом, оставляет необъясненной одну из замечательных особенностей этого вещества, а именно его большую нулевую энергию. По этой же причине объяснение термомеханического эффекта на основании этой модели является до некоторой степени иллюзорным. Выравнивание разности концентраций в этом случае рассматривается как аналогия осмотической диффузии через полупроницаемый капилляр. Очевидно, однако, что подобный диффузионный процесс не может иметь места в смеси, одна из компонент которой—нормальная жидкость—неподвижна благодаря трению, а другая—сверхтекучая жидкость—имеет нулевой импульс. Эти трудности можно обойти, если приписать сверхтекучей компоненте некоторый импульс, но тогда и без того неясная связь свойства сверхтекучести с конденсацией Бозе—Эйнштейна станет еще более туманной.  [c.803]

Отсутствие сверхтекучести у жидкого Не придает доиолнительную значимость идеям Ф. Лондона об интерпретации Х-явления как процесса конденсации Бозе—Эйнштейна во взаимодействующей жидкости. Эти идеи еще более подчеркиваются сходством в поведении обоих изотопов в жидком состоянии. Примером этому может служить характер изменения давления  [c.813]

При подстановке известного из измерений значения скорости звука выражение (23.1) переходит в зависимость 0,021 джоуль1 г- град). Возникновение дополнительных возбуждений выше 0,7°К соответствует в теории Ландау появлению ротонов, а в двухжидкостной модели Тисса—испарению конденсата Бозе—Эйнштейна в пространстве скоростей. Вид ожидаемой зависимости теплоемкости от температуры в этих двух теориях оказывается одинаковым, однако, как уже указывалось в разделе 1, роль вклада обеих компонент в теплоемкость оказывается совершенно различной с точки зрения проблемы сверхтекучести. В теории Ландау сверхтекучая компонента не обладает не только ротонной, но и фононпой энтропией, тогда как, по Тисса, эта компонента должна сохранять свою фононную энтропию. На основании одних только измерений теплоемкости нельзя, таким образом, решить вопрос, имеет ли сверхтекучая компонента фононную энтропию или пет для этого необходимо определить энтропию нормальной компоненты. Такие данные можно получить при достаточно низких температурах, измеряя тепло-перенос и термомеханический эффект в гелии.  [c.824]

То же самое верно и по отношению к теориям Бийла, де-Бура и Михель-са [141] и Темперли [142], которые рассматривают пленку как явление, прямо связанное с Х-переходом. В первой теории сумма пулевой энергии, соответствующей средней длине свободного пробега в идеальном конденсате Бозе—Эйнштейна, н энергии в ноле тяжести исследуется на минимум, что приводит к следующей равновесной толщине пленки  [c.859]

Неидеальный газ Бозе—Эйнштейна. Хотя возможности, представляемые теорией конденсации Бозе—Эйнштейна для объяснения быстрого уменьшения энтропии без привлечения процессов упорядочения в координатном пространстве (таких, как кристаллизация), и являются довольно привлекательными, трудности этой теории немедленно дают о себе знать. Ф. Лондон подчеркивал в своей первой работе различие между идеальным газом и жидкостью, хотя он указывал также, что для идеального газа с массой атома гелия величины Гцр. и 1 ,ф. равны из формул (42.2), (42.11) и (42.12) 3,14° К и 1,28 R соответственно, что удивительно близко к ),-точке и энтро-нии Si жидкого гелия, равных 2,19° К и 0,8 R. Поэтому он предпринял попытки учесть при разумных предположениях силы взаимодействия, чтобы выяснить, получится ли при этом лучшее согласие с экспериментальными  [c.875]

Теория Ландау. Б раннем варианте своей теории Ландау рассматривал спектр фононных возбуждений, отделенный от ротонных возбуждений, т. е. от элементарных возбуждений вихревого движения, энергетической щелью Д, равной по порядку кТх- Хотя Ландау критиковал аргументы Бпйла, он постулировал соотношение между импульсом и энергией ротона, аналогичное предложенному Бийлом, де-Буром и Михельсом для всех возбуждений [см. формулу (43.1)]. Таким образом, при допущении, что ротоны подчиняются статистике Бозе — Эйнштейна, термодинамические соотношения будут здесь подобны соотношениям, приведенным в п. 43.  [c.877]


Смотреть страницы где упоминается термин Бозе-Эйнштейна : [c.82]    [c.82]    [c.81]    [c.322]    [c.721]    [c.783]    [c.800]    [c.806]    [c.813]    [c.837]    [c.876]   
Физическое металловедение Вып I (1967) -- [ c.89 ]



ПОИСК



Бозе Эйнштейна критическая температура

Бозе Эйнштейна функция состояния

Бозе — Эйнштейна закон распределения

Бозе — Эйнштейна конденсация идеальном газе

Бозе — Эйнштейна конденсация н Я-переход

Бозе — Эйнштейна конденсация неидеального газа

Бозе — Эйнштейна конденсация распределение

Бозе — Эйнштейна конденсация температура

Бозе — Эйнштейна распределение

Бозе-газ

Бозе—Эйнштейна конденсация

Бозе—Эйнштейна статистика

Вывод распределений Бозе - Эйнштейна и Ферми - Дирака с помощью большого канонического ансамбля

Газ идеальный Бозе — Эйнштейн

Другое рассмотрение конденсации Бозе — Эйнштейна

Идеальный газ, подчиняющийся статистике Бозе— Эйнштейна

Конденсация Бозе — Эйнштейна в идеальном бозе-газе

Приложение статистики Бозе-Эйнштейна к фотонному газу

Применение общих принципов квантовой теории многих частиц. Статистики Бозе — Эйнштейна и Ферми

Распределения Бозе — Эйнштейна и Ферми — ДираСильно вырожденные идеальные ферми-газы

Распределения Бозе—Эйнштейна и Ферми—Дирака

Распределения функция Бозе — Эйнштейна

Статистика Бозе — Эйнштейна для вырожденного газа

Статистика Бозе — Эйнштейна для идеального газа

Статистика Бозе — Эйнштейна излучения

Статистика Бозе—Эйнштейна. Идеальный бозе-газ

Статистика Ферми — Дирака и Бозе—Эйнштейна

Температура критическая для конденсации Бозе — Эйнштейна

Теория конденсации Бозе — Эйнштейн

Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте