Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Идеальный газ, подчиняющийся статистике Бозе— Эйнштейна

Возбуждения значительно меньшей энергии образуются в том случае, когда все спины повертываются лишь частично. Такая спиновая волна схематически изображена на рис. 10.12. Из рисунка видно, что спиновые волны представляют собой колебания относительной ориентации спинов в кристалле. Они сходны с упругими волнами в кристалле (фононами). Спиновые волны также квантованы. Квант энергии спиновой волны получил название магнон. При повышении температуры число магнонов возрастает, а результирующий магнитный момент ферромагнетика соответственно уменьшается. При малой плотности магнонов взаимодействие их друг с другом можно не учитывать и, следовательно, магноны можно считать идеальным газом. Газ магнонов, так же как и газ фононов, подчиняется. статистике Бозе — Эйнштейна. Если известны  [c.340]


Бозе-газ. Рассмотрим частицы газа, которые описываются симметричными волновыми функциями, и взаимодействие между которыми настолько слабо, что им можно пренебречь. Числа заполнения квантовых состояний при этих функциях могут принимать произвольные значения. В этом случае говорят, что идеальный газ подчиняется статистике Бозе или статистике Бозе-Эйнштейна 0. В частности, это означает, что в каждом квантовом состоянии может находиться любое количество частиц.  [c.30]

Единственной известной системой Бозе, существующей при низких температурах, является жидкий Не . При температуре 2,18° К Не претерпевает замечательный Х-переход, при котором теплоемкость логарифмически расходится. Поскольку атомы Не подчиняются статистике Бозе, естественно, возникает мысль, что этот переход представляет собой конденсацию Бозе — Эйнштейна, видоизмененную наличием межмолекулярных взаимодействий. Правильность такого предположения подтверждается тем обстоятельством, что в жидком Р1е , атомы которого подчиняются статистике Ферми, подобного перехода не наблюдается. Кроме того, подставляя в (12.50) массу атома Не и плотность жидкого гелия, мы получаем температуру перехода Гд = 3,14°К, т. е. значение, имеющее правильный порядок величины. Главное отличие между Я-переходом в жидком Не и конденсацией Бозе—Эйнштейна идеального бозе-газа состоит в том, что Я-переход не -является переходом первого рода. Хотя трудно сомневаться, что статистика Бозе имеет фундаментальное значение для Я-перехода в жидком Не , однако, удовлетворительная теория, учитывающая влияние межмолекулярных сил, еще не построена.  [c.296]

К > -точке (2,18 К). Жидкий Не подчиняется статистике Бозе, но, конечно, не является идеальным газом. Тем не менее в течение долгого времени предполагалось, что переход в > -точке является своеобразной конденсацией Бозе—Эйнштейна, и, как мы покажем позднее, это действительно так.  [c.364]

Параллельно с квант, механикой развивалась квант, статистика — квант, теория поведения физ. систем, состоящих из огромного числа микрочастиц. В 1924 инд. физик Ш. Бозе, применив принцип квант, статистики к фотонам (их спин равен 1), вывел ф-лу Планка для распределения энергии в спектре равновесного излучения, а Эйнштейн — ф-лу распределения энергии для идеального газа молекул Бозе — Эйнштейна статистика). В 1926 Дирак и итал. физик Э. Ферми показали, что совокупность эл-нов (и др. одинаковых ч-ц со спином /а), для к-рых справедлив принцип Паули, подчиняется др. статистич. законам Ферми — Дирака статистике). В 1940 Паули теоретически установил связь спина со статистикой. Квант, статистика сыграла важную роль в развитии Ф. конденсированных сред и в первую очередь Ф. ТВ. тела. В 1929 И. Е. Тамм предложил рассматривать тепловые колебания атомов кристалла как совокупность квазичастиц — фононов. Такой подход позволил объяснить, в частности, спад теплоёмкости металлов (- Г ) с понижением темп-ры Т в области низких темп-р, а также показал, что осн. причина электрич. сопротивления металлов — рассеяние эл-нов на фононах. Позднее были введены др. квазичастицы. Метод квазичастиц оказался весьма эффективным в Ф. конденсированных сред.  [c.815]


А. Эйнштейном в применении к молекулам идеальных газов. В квант, механике состояние системы ч-ц описывается волновой функцией, зави- сящей от координат и спинов ч-ц. В случае Б.— Э. с. волн, ф-ция симметрична относительно перестановок любой пары тождественных ч-ц (их координат и спинов). Гисло заполнения квантовых состояний при таких волн, ф-циях ничем не ограничены, т. е. в одном и том же состоянии может находиться любое число одинаковых ч-ц. Для идеального газа тождественных ч-ц ср, значения чисел заполнения определяются Бозе—Эйнштейна распределением. Для сильно разреж. газов Б.— Э. с. (как и Ферми — Дирака статистика) переходит в Больцмана статистику. См. Статистическая физика. Д- Н. Зубарев. БОЗОН (бозе-частица), частица или квазичастица с нулевым или целочисл. спином. Б. подчиняются Бозе — Эйнштейна статистике (отсюда — назв. ч-цы). К Б. относятся фотоны (спин 1), гравитоны (спин 2), мезоны и бозонные резонансы, составные ч-цы из чётного числа фермионов (ч-ц с полуцелым спином), напр. ат. ядра с чётным суммарным числом протонов и нейтронов (дейтрон, ядро Не и т. д.), молекулы газов, а также фо-ноны в ТВ. теле и в жидком Не, экситоны в ПП и диэлектриках. Б. явл. также промежуточные векторные бозоны я глювны. В. Ц. Павлов.  [c.55]


Смотреть страницы где упоминается термин Идеальный газ, подчиняющийся статистике Бозе— Эйнштейна : [c.91]   
Смотреть главы в:

Введение в термодинамику Статистическая физика  -> Идеальный газ, подчиняющийся статистике Бозе— Эйнштейна

Введение в термодинамику статистическая физика  -> Идеальный газ, подчиняющийся статистике Бозе— Эйнштейна



ПОИСК



Бозе-Эйнштейна

Бозе-газ

Бозе-газ, идеальный

Бозе—Эйнштейна статистика

Газ идеальный Бозе — Эйнштейн

Статистика

Статистика Бозе

Статистика Бозе—Эйнштейна. Идеальный бозе-газ

Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте