Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Очистка электродов

Удаление прилипшего слоя обдувом поверхности практически мало целесообразно, так как для его осуществления необходимы большие скорости воздушного потока (см. гл. VI), а распыляемая пыль вновь может осесть на очищенную поверхность. Скребковый метод очистки электродов не нашел широкого распространения, так как для его осуществления необходима остановка электрофильтра.  [c.270]

Повысить эффективность улавливания пыли электрофильтрами можно путем искусственного увлажнения очищаемого газа или введением тумана серной кислоты при обычной температуре. Замечено, что осаждение золотоносной пыли в электрофильтрах увеличивается при росте содержания паров серной кислоты от 4 до 12%. В этом случае адгезия пыли к осадительному электроду растет за счет капиллярных сил (см. 17). Правда, это затрудняет его последующую очистку. Наличие в никелевой пыли SO3 также, по-видимому, является основной причиной плохой очистки электродов 318].  [c.367]


Важнейшей технологической операцией подготовки твердых полярографических электродов является их очистка, которую необходимо проводить после каждого измерения. Существуют различные способы очистки механические, химические и электрохимические. Наиболее распространенным является способ химической очистки электродов горячей азотной кислотой в течение 3—5 мин с последующей отмывкой их дистиллированной водой. Более совершенны способы электрохимической и гальванической деполяризации. Большое распространение получили металлические электроды из платины, золота, серебра, тантала, а также из коррозионностойких сплавов. Для некоторых специальных методов, например, инверсионной полярографии, нашли применение твердые электроды из графита и графитовой пасты. Такие электроды инертны в водных растворах, имеют достаточно высокое перенапряжение водорода и большую рабочую область анодной поляризации. На графитовых электродах могут быть окислены многие органические вещества. Можно отметить также амальгамированные игольчатые электроды, отличающиеся однородностью и постоянством свойств поверхности. Положительным свойством электродов этого типа является высокая чувствительность (на 1—2 порядка выше, чем у ртутных электродов), более высокая разрешающая способность.  [c.221]

Очистка электродов свечи от нагара.  [c.71]

Электроды требуют осторожного и бережного обращения. Ни в коем случае не следует касаться руками рабочей части электродов. При этом электроды обязательно загрязняются жиром и на загрязненных местах металл не будет осаждаться. Брать электроды в руки следует за самый верх стержня. Нельзя при закреплении стержней в клеммах слишком крепко завинчивать винты. Для очистки электроды погружают на некоторое время (5—10 мин) в горячую НЫОз (1 1). Вынув электроды из раствора, дают стечь последним каплям НЫОз, промывают электроды водопроводной, затем дистиллированной водой. Раствором НЫОз можно пользоваться много раз.  [c.86]

Уход за свечой сводится к очистке электродов от нагара, а в случае необходимости — регулировке искрового зазора.  [c.117]

Следует отметить, что эффективность очистки электродов может понижаться при цементации золы на электродах, которая происходит вследствие засасывания водяных паров и брызг ВОДЫ из каналов гидрозолоудаления.  [c.291]

Для повышения степени очистки дымовых газов обычно применяют двухступенчатую очистку, представляющую собой комбинацию двух последовательно включенных золоуловителей. Наиболее употребительна установка в первой ступени батарейного циклона, а во второй — электрофильтра. Исследования комбинированного золоуловителя БЦ — ДВП показали достаточно устойчивый к. п. д. порядка 90% (с колебаниями в пределах 86—95%). В комбинированных золоуловителях с пластинчатым электрофильтром степень очистки газов достигает 98—99%, что следует объяснить более совершенным методом очистки электродов благодаря их непрерывному встряхиванию и надежной работой коронирующей системы.  [c.292]


Способ сварки по слою клея имеет определенные недостатки наличие клеевого слоя на сопрягаемых поверхностях деталей (особенно при сварке на пределе жизнеспособности клея) нередко затрудняет формирование ядра сварной точки, часто приводит к образованию в нем внутренних дефектов, затрудняет сборку и фиксацию элементов конструкции под сварку. Излишки клея, выдавливаемые из зазора, загрязняют поверхность деталей и электродов, вызывая перегрев зоны сварки, прожоги и необходимость дополнительной очистки электродов. Этот метод следует применять в тех случаях, когда введение клея после сварки невозможно (например, из-за плохой проникающей способности и малой жизнеспособности клея) или нерационально (в связи с конструктивными особенностями свариваемого узла).  [c.155]

Работа правильно смонтированных и нормально отрегулированных механизмов встряхивания обеспечивает меньший износ деталей при хорошей очистке электродов от пыли. Благодаря качественному встряхиванию электродов поддерживается нормальный электрический режим очистки газов, уменьшается вторичный унос пыли.  [c.42]

К неисправностям свечи относятся трещины изолятора, обгорание электродов или неправильный зазор между ними, отложение нагара на электродах. Для нахождения неисправной свечи нужно при работающем двигателе на холостом ходу поочередно отсоединять от свечей провода высокого напряжения (снимать наконечники). Если при этом перебои в двигателе увеличиваются, то проверяемая свеча исправна, а если работа двигатеЛя не изменяется, свеча неисправна. Кроме того, неработающая свеча будет несколько холоднее остальных. Неисправную свечу необходимо вывернуть и после очистки электродов, нижней части изолятора и корпуса свечу промыть бензином и продуть сжатым воздухом. Лучшие результаты очистки свечей достигаются на специальном пескоструйном аппарате. Зазор между электродами свечи проверяют круглым щупом и при необходимости регулируют, устанавливая его величину в пределах 0,6—0,7 мм подгибанием бокового электрода. Частая причина перебоев в цилиндрах — окисление и обгорание контактов прерывателя, которые в этом случае оказывают большое сопротивление протеканию тока, в результате чего снижаются сила тока в первичной обмотке катушки зажигания и напряжение во вторичной цепи. При малом зазоре между контактами прерывателя время разомкнутого состояния контактов уменьшается и магнитное поле, создаваемое первичной обмоткой, не успевает полностью исчезнуть. При слишком большом зазоре, наоборот, уменьшается время замкнутого состояния контактов и ток в первичной цепи не успевает восстанавливаться до максимальной величины. В том и другом случаях во вторичной обмотке уменьшается напряжение и могут появляться перебои в цилиндрах, особенно с увеличением скорости вращения коленчатого вала. Обгоревшие контакты прерывателя зачищают надфилем или сложенной вдвое стеклянной бумагой.  [c.102]

Техническое обслуживание сигнализаторов уровня типа СУС заключается в периодической очистке электродов от пыли и грязи, внешнем осмотре ПП, ВПР и линий связи, уплотнении сальниковых вводов и проводных жил.  [c.75]

При сварке неплавящимся электродом на переменном токе сочетаются преимущества дуги на прямой и обратной полярностях. Однако асимметрия электрических свойств дуги, обусловленная ее меньшей электрической проводимостью при обратной полярности по сравнению с прямой, приводит к ряду нежелательных явлений. В результате выпрямляющей способности дуги появляется постоянная составляющая тока прямой полярности. В этих условиях дуга горит неустойчиво, ухудшается очистка поверхности сварочной ванны от тугоплавких оксидов и нарушается процесс формирования шва. Поэтому для питания дуги в аргоне переменным током при-  [c.196]

Подготовительное время выделяется на получение рабочим задания, подготовку и наладку оборудования и приспособлений. Основное (машинное) время — время выполнения непосредственно основной операции (время горения дуги, резки). Вспомогательное время включает время на смену электродов, очистку кромок и швов, их осмотр, клеймение, переходы на другую позицию и т. д.  [c.138]


Для сварки употребляется аргон марки А, прошедший дополнительную очистку (см. гл. 9). Предпочтительно сварку вести неплавящимся электродом (W), тщательно организуя газовую защиту сварочной зоны. Для сварки титана надо защищать не только саму ванну, но и весь металл, нагретый до температуры 773 К, т. е. необходимо создавать атмосферу аргона перед дугой и обдувать аргоном кристаллизующийся и остывающий шов. Кроме того, аргон подают снизу для защиты обратной поверхности свариваемого изделия (обратная сторона шва).  [c.388]

Основными шихтовыми материалами для получения жидкого титанового сплава служат расходуемые титановые электроды в виде слитков первого переплава диаметром 280 мм и длиной 750 -1000 мм, отходы собственного производства (возврата) до 30%. Их следует применять после очистки в галтовочном барабане и травления.  [c.324]

Установка электрогидравлической очистки состоит из выпрямителя и конденсаторов, которые разряжаются периодически через воздушный искровой разрядник. Энергия конденсаторов передается на пару электродов, погруженных в жидкую среду. При разряде большая часть энергии уходит в объем жидкой среды между электродами, так как в этом месте сопротивление во много раз выше, чем в любом другом отрезке разрядного контура.  [c.361]

Выбранные отрезки платиновой и платинородиевой проволок, лишенные узлов, резких сгибов и других неровностей, кипятят в 50%-ном растворе соляной кислоты и после этого несколько раз кипятят и промывают в дистиллированной воде. После такой очистки к проволокам не прикасаются руками, а берут проволоку ватой, смоченной в этиловом спирте. Далее проволоки предварительно отжигают в течение 2 ч, пропуская по ним электрический ток так, чтобы проволоки нагрелись в воздухе до красного каления. После этого проводят сварку горячего спая постоянным током, причем положительным электродом должна быть термопара, а отрицательным — угольный стержень.  [c.104]

Длительность удержания частиц на поверхности осадительных электродов зависит от напряжения и размера частиц. Мелкие частицы золы менее электропроводные и имеющие большую удельную поверхность значительно дольше удерживаются на поверхности электрофильтров, чем крупные, и степень их улавливания выше. Степень очистки газов, определяемая как процентное отношение количества уловленной золы Gy к входному количеству Gb, для современных конструкций электрофильтров достаточно высока  [c.146]

При прохождении постоянного тока через загрязненные жидкие диэлектрики наблюдается спад тока с течением времени, сопровождающийся явлением электрической очистки. Эта очистка объясняется тем, что ионы примесей и всевозможные другие загрязнения переносятся электрическим полем на электроды, где и нейтрализуются, оставаясь вблизи последних, Из зоны электродов эти продукты могут быть легко удалены. Однако таким путем трудно очищать большие массы жидкостей. Электропроводность жидкого диэлектрика, не имеющего никаких примесей и загрязнений, ионная. Она определяется переносом электрическим полем ионов, образовавшихся вследствие частичной диссоциации молекул самой жидкости. Степень диссоциации молекул жидкого диэлектрика мала и зависит от структуры неполярные молекулы менее подвержены диссоциации, чем полярные. Поэтому, как правило, меньшую электрическую  [c.46]

Очистка жидких диэлектриков от содержащихся в них примесей заметно повышает их удельное сопротивление. При длительном пропускании электрического тока через неполярный жидкий диэлектрик также можно наблюдать возрастание сопротивления за счет переноса свободных ионов к электродам электрическая очистка).  [c.34]

Аноды с наложением тока от внешнего источника и измерительные электроды должны быть смонтированы очень тщательно. Повреждения изоляции, которые возможны например при сварке, необходимо сразу же отремонтировать. Поверхности анодов и измерительных электродов после монтажа должны быть покрыты водорастворимым клеем и бумагой для защиты от осаждения материала покрытия и от загрязнений. Если после монтажа предусматривается выполнение мероприятий по пассивной защите от коррозии и дробеструйной очистке, то временное покрытие должно иметь достаточную стойкость к соответствующим воздействиям.  [c.368]

Электроэрозионное прошивание отверстий оправдано только для труднообрабатываемых материалов. Для легкообрабатываемых оно по производительности во много раз уступает обычному сверлению, его преимущество только в том, что отверстия не имеют заусенцев. При прошивании отверстий в них образуется конусность за счет паразитных разрядов между электродом и стенками отверстия (.рис. 93, а). На черновых режимах конусность больше, чем на чистовых. Конусность может быть уменьшена или ликвидирована калиброванием отверстия неизношенным инструментом. Интенсивность боковых разрядов, а следовательно, и конусность снижаются, если для очистки межэлектродного зазора от продуктов эрозии применяют прокачивание рабочей жидкости через полый электрод (рис. 93, б). Помогает и периодическое прополаскивание образующейся полости. Рабочая жидкость при этом долл на фильтроваться, так как наличие в ней продуктов обработки усиливает паразитные токи.  [c.157]

Прилипшую пыль, прежде всего, можно очистить механически обдувом запыленной поверхности, обработкой ее скребками, применением вибрации и ударного действия, а также смыванием водой. Удаление прилипшего слоя обдувом поверхности практически мало целесообразно, так как для его осуществления необходимы большие скорости воздушного потока (см. гл. X), а распыляемая пыль вновь может осесть на очищенную поверхность. Скребковый метод очистки электродов ие нашел широкого распространения, так как для его осуществления необходима остановка электрофильтра. Вибрационная очистка хотя и применяется на практике, но не всегда обеспечивает требуемую степень очистки. Так, при использовании вибраторов (частота 50 Гц при амплитуде колебания 1,2 мм) создается отрывающая сила 120 ед. Однако такая сила может обеспечить разрушение слоя пыли шахтных печей, содержащих 50—60% частиц свинца и 10—15% цинка диаметром 0,8—1,5 мкм, лишь по аутогезионным связям, а монослой частиц остается на поверхности электрода. В зависимости от величины силы адгезии слоя частиц ускорение отрыва должно быть равно 100—1000 Qjx.g. Для удаления слабо прилипшей пыли ускорение отрыва может быть равно 2 ед. g [317].  [c.368]


Поверхности электродов, находящиеся в контакте с испытуемой жидкостью, должны иметь зеркальную полировку (для облегчения очистки). Электроды следует изготовлять из неокисляющегося металла, устойчивого против коррозии, например из нержавеющей стали (золота, платины). Предпочтительно не пользоваться гальваническими покрытими, так как последние после более или менее продолжительной работы с электродами частично разрушаются, поверхность электродов становится пористой и ухудшается сходимость результатов измерений, особенно в случае полярных жидкостей (типа хлор-бензолов и др.). В качестве изоляционного материала для дистанцирующих прокладок электродов можно использовать плавленый кварц. Вследствие разницы между температурными коэффициентами линейного расширения обычных металлов и плавленого кварца необходимо предусмотреть соответствующий радиальный зазор между деталями с тем, чтобы не нарушалась точность центровки электродов.  [c.38]

В последнее время для получения сплошного слоя покрытия Л. И. Каданер [70] предложил обратное — вместо тщательной очистки электрода создавать на нем пассивную пленку. Действительно, при наличии однородной, сплошной пассивной пленки на поверхности электрода распределение тока на  [c.427]

Очистку электродов надо производить возможно чаще, употреб-ляя для этого мелкую наждачную бумагу.  [c.70]

Соединение рабочей части с основанием фигурных электродов из Бр.НБТ при их изготовлении (восстановлении), если нагрев электродов в месте соединения при сварке невысок (150—200° С), может выполняться пайкой припоем П-425А (ПЦАМ-65). Сборка соединяемых частей электродов производится с помощью центрирующих выступа и впадины, причем зазоры не должны превышать 0,15 мм. Пайка осуществляется раздельным погружением основания и рабочей части электрода сначала в ванночку с расплавленным флюсом 34А, а затем в ванночку с припоем при температуре 450° С. После достаточного прогрева и облуживания поверхности обе части электрода соединяются и охлаждаются до затвердевания припоя. Затем производится очистка электрода от флюса.  [c.75]

Подготовка под сварку зависит от вида исправляемого дефекта. Одпако по всех случаях подготовка дефектного места заключается в тщательной очистке от загрязнений и в разделке для образования полостей, обеспечивающих доступность для манипулирован ня электродом и воздействня сварочной дугп. Для предупреждения вытекания жидкотекучего металла сварочной ванны, а в ряде случаев для придания наплавленному металлу соответствующей формы, место сварки формуют. Формовку выполняют в зависимости от размеров и местоположения исправляемого дефекта с помощью графитовых пластинок, скрепляемых формовочной массой, состоящей из кварцевого песка, замешенного на жидком стекло, или другими формовочными материалами, а также в опоках формовочными материалами, применяелгыми в литейном производстве (рис. 154).  [c.327]

Сварку выполняют пеплавящимся (вольфрамовым) и плавящимся электродами. Используют инертные по отношению к меди газы аргон всех сортов по ГОСТ 10157—73, гелш (чистотой 99,9%), азот (с дополнительным его осушепием и очисткой сели-кагелем). Эти газы в меди не растворяются и с пей не взаимодействуют, Целесообразно использование газовых смесей тина 70  [c.346]

Титановуюгубкуплавят методом вакуумно-дугового переплава (см. с. 47). Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. После этого чистота титана составляет 99,6—99,7 %. После вторичного переплава слитки используют для обработки давлением.  [c.52]

Способы снижения концентрации водорода в металле сварных швов главным образом основаны на устранении источников, снабжающих атмосферу дуги водородом. Это прокалка электродов с фтористо-кальциевыми покрытиями при 720...770 К, низкокремнистых флюсов при 870 К и фтористо-кальциевых при 1170 К в течение 3...5 ч осушение защитных газов селикагелем, чтобы их точка росы поддерживалась на уровне не выше 218 К, очистка свариваемых кромок и сварочной проволоки от ржавчины, масла и других загрязнений.  [c.543]

Сварка труб из стали 15Х5М была выполнена аз стенит-ными электродами марки ОЗЛ-6 (типа Э-10Х25Н13Г2). Необходимо отметить, что из-за неритмичной поставки сырья и слабой загрузки технологических установок НПЗ происходят частые их остановки. Такой температурный режим работы в сочетании с изменениями, вызываемыми коррозионным износом, приводят к повреждениям в зоне сварных стыков и отказам. В частности, наблюдались растрескивания по металлу закаленных зон термического влияния монтажных стыков (рис. 3.13, а) радиантного змеевика печи тяжелого сырья (среда керосин и водородсодержащая щелочь, рабочее давление на входе - 1,2 МПа, температура на входе - 150-200°С и на выходе - 360-390°С). Внутренняя и наружная поверхности монтажных кольцевых швов конвекционной части печи установки селективной очистки масляных фракций (среда масля-  [c.156]

В отличие от дуговой плавки с расходуемым электродом элскт-ронно-лучсвой нагрев позволяет расплавлять кусковой материал, в том числе и отходы применяемых сплавов, производить легирование сплава введением легирующих компонентов в твердую шихту или в расплавленный металл в ходе плавки. При этом представляется возможн[)1м выдерживать расплав в течение любого времени и перегревать его до необходимой температуры. Кроме того, электронный нагрев позволяет создавать глубокий вакуум непосредственно над зеркалом ванны жидкого металла для максимальной очистки его от вредных примесей.  [c.313]

Для улавливания твердых частиц из дымовых газов существуют сухие и мокрые золоуловители. Аппараты для сухой очистки дымовых газов основаны на иопользовании сил инерции, тяжести и центробежных или иа образовании коронного разряда между электродами и 1напра1влен1ного движения газа, есущего твердые частицы к положительному электроду, на котором частицы осаждаются.  [c.330]

Электрические фильтры устанавливают к котельным агрегатам средней и большой паропроизводительности. Работа электрофильтров основана на том, что в проходящих через них запыленных газах частицы золы заряжаются от стержневых излучающих электродов положительными электрическими зарядами, вследствие чего. эти частицы притягиваются к осадительным пластинчатым электродам, заряженным отрицательными зарядами. Электрофильтры при работе на газах, запыленных мелкодисперсными частицами, характеризуются высокой степенью очистки, составляющей 90—95%. Скорость движения газов в них не превышает 2—З м1сек, а аэродинамическое сопротивление составляет 150—200 н/м .  [c.317]

Электроды — сферы диаметром 12,5 мм, расстояние между ними 5 мм. Для сопоставления звездочкой отмечено значение пробивного напряжения трансформаторного масла средней степени очистки между темн же электродами прн нормальном атмосферном. (авлснии  [c.92]

Разработанные Таллинским политехническим институтом стационарные измерительные вставки для определения быстроизменяюшейся температуры на лобовой стороне трубы в цикле очистки позволяют одновременно измерять в шести точках с шагом 50 мм. Используются хромель-копелевые кабельные термопары с наружным диаметром 1,5 мм и диаметром электродов 0,20 мм, термопары устанавливаются на расстоянии 0,4—0,5 мм от наружной поверхности трубы (точное их расположение определяется после вырезки вставки из котла).  [c.209]

Меры по контролю выбросов летучей золы. Для снижения выбросов летучей золы применяются следующие меры использование топлива высокого качества, контроль образования летучей золы путем модификации метода сжигания и очистки газов с помощью фильтров. Механизм образования летучей золы различается в зависимости от вида используемого топлива например, она не образуется при сжигании сжиженного природного газа. В качестве устройств для очистки дымовых газов применяются высокоэффективные электрофильтры. В целях более успешной эксплуатации их разработаны следующие технические приемы предотвращение дисперсии на основе усовершенствования способа стряхивания золы, осевшей на пластинчатых электродах модификация процесса улавливания на основе нейтрализации кислотной золы аммиаком, добавляемым в дымовые газы, и т. д. В результате этого в последнее время эффективность очистки дымовых газов от летучей золы при сжигании мазута и нефти достигла более90%-Хотя при сжигании этих видов топлива объемы выбросов летучей золы весьма невелики, в Японии почти все котлы, за исключением котлов ТЭС, использующих природный газ, оборудованы электрофильтрами.  [c.139]


Повышение силы тока, однако, может привести к противоположным результатам. При частоте следования импульсов, равной 400 имп/с, стабильность процесса начинает снижаться, едва ток достигает 400 А, при 700 А процесс становится неустойчивым, так как образующиеся частицы эрозии оказываются соизмеримыми с величиной кежэлектродного зазора и их удаление из зоны обработки затруднено. Поэтому при данной частоте работу при токе, равном и более 450 А, вести не рекомендуется. Обработка на черновых режимах связана с большим газовыделением, сильным нагревом электродов и рабочей жидкости. Мощные разряды вызывают механические колебания электродов и их принудительная вибрация, которая часто применяется для интенсификации процесса и улучшения очистки межэлектродного промежутка, в этом случае оказывается ненужной.  [c.155]


Смотреть страницы где упоминается термин Очистка электродов : [c.431]    [c.270]    [c.430]    [c.924]    [c.59]    [c.84]    [c.381]    [c.387]    [c.147]    [c.165]    [c.337]   
Адгезия пыли и порошков 1967 (1967) -- [ c.270 ]

Адгезия пыли и порошков 1976 (1976) -- [ c.367 ]



ПОИСК



Очистка осадительных электродов электрофильтров от прилипшей пыли



© 2025 Mash-xxl.info Реклама на сайте