Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивность кинетика анодных процессов

Ингибиторы (окислители), действуюш ие по этому механизму, не изменяют непосредственно или существенно не влияют на кинетику анодного процесса, но, увеличивая эффективность катодной деполяризации, смещают общий потенциал коррозионной системы к более положительным потенциалам, соответствующим наступлению пассивности анодного процесса.  [c.186]

Добавка в бетон солей нитритов (см. рис. 33, кривые 2 и 3) резко изменяет кинетику анодного процесса. При этом потенциал пассивации Е , который характеризует начало образования защитной пленки, и потенциал полной пассивации, который характеризует завершение формирования защитной пленки, сильно смещаются в область отрицательных значений. Это смещение тем значительнее, чем выше до известного предела концентрация нитрит-ионов. Предельный ток пассивации также сильно уменьшается. Все это свидетельствует о едином механизме торможения коррозии с помощью подобных добавок анодного действия. Он заключается в создании пассивной пленки на иоверхности металла. Величины равновесных потенциалов для всех образцов примерно одинаковы (—150) — (—200 в). При таком значении потенциала возможно формирование защитной пленки даже в присутствии хлорид-ионов. Для образцов без замедлителей такое значение этого потенциала со-  [c.152]


Неорганические ингибиторы, которые в основном применяют в нейтральных электролитах, влияют главным образом на анодный процесс и пассивное состояние металла. Подавление коррозии благодаря изменению лишь кинетики катодной реакции в ней-  [c.7]

Когда ингибирование коррозионных сред осуществляется с помощью соединений, изменяющих преимущественно кинетику анодной реакции, а этот механизм является в нейтральных электролитах наиболее эффективным, то ингибирование тесно связано с пассивацией. Оба эти процесса зависят от природы пассивирующих слоев, возникающих на поверхности металла, а также характера и кинетики катодного процесса, обеспечивающего перевод металла в пассивное состояние.  [c.9]

Очень широкое распространение получили электрохимические методы исследования пассивности снятие потенциостатических кривых, анодных и катодных кривых заряжения, изучение кривых спада потенциала, исследование емкости двойного слоя, кинетики электродных процессов при поляризации импульсным и переменным током. Для определения структуры, толщины и состава образующихся при пассивации защитных пленок применяют электронографический, оптический, микрохимический, радиографический и некоторые другие методы.  [c.18]

По достижении полной пассивности (точка Р) при дальнейшем смещении потенциала в анодную сторону ток обычно меняется несущественно. Объяснение этому, а также более детальное рассмотрение кинетики и механизма анодных процессов на пассивной поверхности будет приведено далее при рассмотрении пассивности.  [c.33]

В следующих разделах работы будут описаны эксперименты, отражающие конкурентную адсорбцию СЮ и других анионов, кинетику их адсорбции и десорбции, влияние различных анионов не только на усредненную стационарную скорость растворения, но и на динамику растворения пассивного железа, показывающую характер и интенсивность анодных процессов в дефектных местах пленки — активных порах . Мы не можем не учитывать этих результатов, выявляющих важные особенности адсорбции анионов, при обсуждении только что описанных закономерностей. Поэтому мы позволим себе здесь, забегая вперед и не вдаваясь в обоснования  [c.55]

Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач.  [c.51]


Кроме того, пространственное разделение катодных и анодных процессов приводит, по нашему мнению, к изменению кинетики и соотношения скоростей анодных реакций растворения и образования пассивной пленки.  [c.148]

В книге дано изложение вопросов теории химической и электрической коррозии металлов. Разобрано значение кинетики катодного и анодного процесса, а также омического сопротивления в установлении общей скорости коррозии металлов и сплавов. Подробно описано влияние различных факторов (внешних и внутренних) на коррозионные процессы. Дана современная теория пассивного состояния металлов.  [c.2]

Образование пленки меди на бронзовой поверхности происходит в результате электрохимического процесса — процесса растворения металла. Согласно закону электрохимической кинетики скорость анодного растворения должна возрастать при увеличении потенциала, однако в нашем случае этого не происходит. Вследствие образования сервовитной пленки между анодными и катодными участками поверхности бронзы процесс растворения может полностью прекратиться, наступит установившийся режим трения. Если по каким-либо причинам медная пленка разрушится, то вновь произойдет растворение бронзы, и поверхность будет обогащаться медью, пока снова не наступит пассивное состояние.  [c.274]

Смещение стационарного потенциала в щели в отрицательную сторону в первом случае — приведет к активированию металла и усиленному его разрушению в щели 12 <12), а во втором случае Кз — ) пассивное состояние не будет нарушено (I s i ). Отсюда следует, что особо чувствительными к щелевой коррозии должны быть металлы, находящиеся в пассивном состоянии. Однако не всегда уменьшение эффективности катодного процесса и ускорение анодного в щелях должно вызывать активирование сплава. Если эти изменения в кинетике электрохимических реакций не выводят стационарный потенциал за значение потенциала полной пассивации, активирования не произойдет. Хотя нержавеющие и обычные стали (последние  [c.217]

Облучение тепловыми нейтронами с потоком 10 н/сл се/с при температуре 80—90° (рис. I—12) не изменяет кинетики анодного процесса стали 1Х18Н9Т в растворе 0,01 Н сульфата натрия. Скорость анодного процесса в областях пассивной и перепассивации, а также величина потенциала пробоя одинаковы как при облучении, так и без него.  [c.43]

Таким образом, облучение будет воздействовать на коррозионный процесс, увеличивая главным образом скорость катодного процесса. В зависимости от характера кинетики анодного процесса смещениеста-ционарного потенциала металла под влиянием облучения будет изменять и скорость коррозионного процесса. Если облучение 21д1[ма/см ] приводит потенциал к значениям, соответствующим пассивной области, скорость коррозии уменьшится если к значениям потенциала, отвечающим активной области или области перепассивации,— она увеличится. В отдельных случаях, например, при коррозии циркония, следует учитывать также изменение оКисной пленки на металле, происходящее под влиянием облучения. Поскольку конструкционные материалы оборудования установок в условиях эксплуатации, как правило, находятся в пассивном состоянии, облучение не оказывает заметного влияния на коррозионную стойкость. Но если это оборудование изготовлено из углеродистой стали, скорость коррозионного процесса 1,46] несколько увеличивается.  [c.44]

Можно полагать, что именно протекание аналогичной реакции на электроде и в случае присутствия ионов хлора препятствует пассированию железа в растворах хлоридов. Исследование кинетики анодного процесса показало (рис. II1-4), что анодная поляризационная кривая стали 12ХМв I,ОН растворе сульфата натрия при температуре 300° С имеет сложный характер. С увеличением потенциала до — 0,050 в скорость анодного процесса возрастает. Железо в этой области потенциалов растворяется в активном состоянии. При дальнейшем увеличении потенциала скорость анодного процесса растворения металла сначала уменьшается, а затем изменяется крайне незначительно в достаточно широкой области потенциалов. Последнее обстоятельство указывает на то, что железо переходит в пассивное состояние. С дальнейшим ростом потенциала скорость растворения железа вновь увеличивается. Последняя область потенциалов соответствует перепассивации. Поскольку при низкой и высокой температурах введение в воду сульфата натрия в количестве 0,5 М не влияет существенным образом на характер и скорость коррозии низколегированных сталей аналогичный ход зависимости скорости растворения железа от потенциала следует ожидать и в дистиллированной воде. В нейтральных растворах, насыщенных воздухом, железо корродирует в основном с кислородной деполяризацией. Из представленной на рис. III-5 коррозионной диаграммы, полученной на основании опытных данных [111,6].  [c.96]


В последние годы для изучения кинетики электродных процессов на пассивирующихся металлах и сплавах наиболее широкое распространение получил потенциостатический метод снятия анодных поляризационных кривых. Этим методом определяют зависимость между потенциалом и анодным током электрода, причем потенциал электрода автоматически поддерживают постоянным или изменяют с определенной скоростью. Более подробно указанный метод будет рассмотрен в разделе, посвященном кинетике анодных процессов (стр. 47), где на конкретных примерах иллюстрируются возможности использования некоторых электрохимических методов для исследования различных сторон явления пассивности металлов. Значения потенциалов там, где нет специальных указаний, даны по отношению к нормальному водородному электроду.  [c.18]

Наиболее эффективным путем создания промышленных коррознонностойких сплавов является повышещ-ie торможения кинетики анодного процесса, т. е. такое легирование, которое суш,ественно облегчает способность основы сплава к переходу в пассивное состояние или повышает устойчивость пассивного состояния силава. Наглядно это можно представить на поляризационной диаграмме коррозии (рис. 38). Характерной особенностью анодной кривой EaDFGQ) для пассивирующегося металла является ее немонотонность. При достижении критического потенциала пассивации Еп, на участке DF наблюдается обратная  [c.124]

Рассмотрим, как изменяются основные пассивационные характеристики титана и сплавов системы Fe—Сг под влиянием легирующих компонентов. Характер пассивации металла или сплава определяется, как известно, кинетикой анодных процессов при переходе сплава в пассивное состояние, при нахождении их в пассивном состоянии и при возможном нарушении пассивности. Эти данные могут быть получены на основании анализа анодных поляризационных кривых. При некотором упрощении задачи построение кривых заменяют определением местоположения характерных точек (рис. 39). Здесь благоприятное смещение критичес-  [c.127]

Кинетика анодных процессов на алюминии существенно зависит от анионного состава электролита и его концентрации. На анодных поляризационных кривых, полученных для алюминия в разбавленных кислородсодержащих электролитах, можно выделить область активного растворения, пассивную область и область перепассивации. Величина пассивной области определяется природой как анионов в растворе, так и наличием на поверхности металла ранее образованной окисной пленки. Например, в 0,5Н )астворе сульфата пассивная область простирается до 3,7 В [36]. 1ри достаточно большом смещении потенциала в положительную I область на окисной пленке происходит выделение кислорода бОН"- 30 + ЗНзО + 6е . Другой возможной анодной реакцией при этом является переход катионов алюминия в раствор.  [c.56]

Одним из основных легирующих компонентов, способствующих пассивации железа, является хром. С увеличением его содержания в сплаве железо — хром потенциал, при котором металл переходит в пассивное состояние, смещается в отрицательную сторону, что приводит к расширению пассивной области. Потенциал начала области перепасси-вации практически постоянен при всех концентрациях хрома. С ростом концентрации хрома скорость растворения сплава в пассивной области уменьшается. Исследования влияния содержания хрома на кинетику анодного процесса сплава железо—хром показали, что при концентрации хрома до 4% на анодных поляризационных кривых область пассивации отсутствует. У сплавов, содержащих 8—12% хрома, скорость анодного процесса хотя и несколько за-116  [c.116]

Хлористый натрий в отличии от сульфата натрия существенно влияет на кинетику анодного процесса алюминия. Как будет показано далее, с ростом концентрации хлорида потенциал выхода алюминия в перепассивацию снижается. С увеличением концентрации хлорида электропроводность среды и эффективность работы гальванических пар пленка—пора возрастает. В месте с тем вследствие депассивирующего действия хлоридов уменьшается анодная поляризация алюминия в порах. В связи с этим интенсификация работы гальванических пар не приводит к увеличению потенциала. В этом случае стационарный потенциал определяется потенциалом выхода алюминия из пассивного состояния и, естественно, уменьшается с ростом концентрации хлорида (табл. 3). Стационарный потенциал алюминия уменьшается практически прямо пропорционально логарифму концентрации хлор-иона [10].  [c.10]

Кинетика анодного процесса на алюминии существенно зависит от аниона и его концентрации. В деаэрированной дистиллированной воде и в деаэрированном 0,1-н. растворе нитрата калия на анодной поляризационной кривой алюминия чистоты 99,99% имеется область активного растворения, пассивная область и область перепассивации (рис. 3). Введение в воду нитрата в концентрации 0,1-н. не изменяет кинетики анодного процесса. При потенциалах от —0,87 в до —0,4 в алюминий 8 дистилированной воде и растворе нитрата находится в пассивном состоянии. В 0,5-н. растворе сульфата алюминий пассивируется до 3,7 в. Далее следует пробой пленки И при потенциале 2,3 в алюм иний практически перестает поляризоваться. На поверхности металла, как и в серной кислоте, происходит попеременно выделение кислорода и растворение алюминия.  [c.15]

Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической защите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потен-циостатический. Гальваностатический метод заключается в измерении стационариого потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/-г).  [c.342]


Все эти результаты, хорошо согласующиеся с данными последних исследований, позволяют связать пассивное состояние металлов с наличием на их поверхности хемосорбированных слоев кислородсодержащих частиц I 8,80 > 108]. Для хрома [ 109, 110] и никеля [lili установлено, что пассивация обеспечивается наличием на поверхности металла примерно монослойных покрытий. Для железа, по-видимому, характерно образование более толстых слоев [112]. Уже сравнительно давно было отмечено [ 1,3,8] J что отсутствие зависимости (или слабая зависимость) стационарной скорости растворения пассивного металла от потенциала ни в коей мере не характеризует истинную кинетику самого процесса растворения. В этом случае влияние потенциала является более сложным, поскольку его рост приводит не только к обычному ускорению анодного растворения металла, но и к изменению состояния металлической поверхности, которое равноценно повышению перенапряжения того же процесса. По-видимому, в случае железа и хрома эти эффекты полностью компенсируют друг друга, что и приводит к независимости стационарной скорости растворения этих металлов в пассивном состоянии от потенциала. Поскольку, однако, характерное для каждой величины потенциала стационарное состояние поверхности устанавливается относительно медленно, эти два эффекта удается разделить, если применить метод быстрого наложения поляризации. Так, например, для хрома ШО показано [ 8], что при быстрых измерениях (постоянное состояние поверхности) сохраняется  [c.25]

При комнатной температуре введение в воду нитратов в количестве 0,001 Н и карбонатов до насыщения не изменило кинетики анодного и катодного процессов. В соответствии с этим скорость коррозии стали 1X18Н9Т в этих средах близка к скорости ее в дистиллированной воде (см. табл. 111-6). Величины стационарных потенциалов свидетельствуют о том, что сталь 1Х18Н9Т в указанных растворах находится в пассивном состоянии. Увеличение скорости коррозии аустенитной нержавеющей стали при температуре 300° С в воде, содержащей карбонаты, вероятно, может быть связано с диссоциацией карбонатов при высокой температуре, образованием углекислого газа и подкислением среды.  [c.123]

Из многочисленных способов защиты, пожалуй, наиболее важны методы, повышающие торможение анодного процесса или, другими словами, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. К этим методам защиты относятся создание большинства коррозионноустойчивых сплавов, как, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и нассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки, или смазки). В последнее время методы защиты путем анодного торможения коррозионного процесса дополнились принципиально новыми предложениями катодным легированием сплавов и применением анодной поляризации внешним током или использованием катодных протекторов. Открытие этих методов было логическим следствием большого числа глубоко продуманных систематических исследований в области кинетики электрохимических процессов коррозии.  [c.10]

Снятие поляризационных кривых при изучении коррозионных процессов преследует различные цели. К ним можно отнести изучение кинетики катодного или анодного процессов, установление оптимальной величины защитного тока при применении катодной или протекторной защиты, графический метод расчета дифференцэффекта, изучение влияния катодных контактов на коррозию конструкций, исследование явления пассивности и др.  [c.162]

Как правило, растворение металлов в пассивной области (см. участок СО рис. 3) происходит при образовании катионов высшей валентности (например, Ре , Сг ). Поскольку при столь малой интенсивности растворения очень мала вероятность развития диффузионных ограничений процесса, гидродинамические условия не влияют на кинетику растворения металла в рассматриваемой пассивной области. Пассивационные явления на поверхности анодно-растворяющегося металла имеют большое значение для процесса и влияют на производительность ЭХО и качество поверхности. Пассивность, зависящую от многих факторов (состава металла, активности раствора и т. д.), можно рассматривать как состояние повышенной устойчивости металла, вызванное торможением анодного процесса в условиях, когда с точки зрения термодинамики он реакционно способен. Как правило, пассивность связана со значительным изменением потенциала металла в положительную сторону вследствие воздействия сильной окислительной среды или анодной поляризации [177].  [c.28]

Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно.  [c.10]

Рассмотрено применение хроноамперометрии к исследованию кинетики анодного окисления пассивных металлов. Показано, что метод позволяет установить замедленную стадию процессов, протекающих в твердой фазе или с участием переноса реагентов через твердую фазу. С помощью этого метода установлено, что в щелочных растворах пассивация процессов окисления серебра связана с торможением самого электрохимического акта процесса, а пассивация никеля и цинка — с возникновением необратимой концентрационной поляризации в пассивирующем окисном слое.  [c.216]

Рассмотри.м влияние хлоридов на коррозию алюминия и его сплавов. Присутствие в воде хлоридов до определенной концентрации последних не влияет существенным образом на кинетику катодного лроцесса алюминия [56]. Скорость же анодного процесса, как было показано ранее (см. стр. 17), зависит от присутствия хлоридов в среде. При концентрации хлоридов 0,5 мг/л пассивная область, хотя и сохраняется, но уменьшается по сравнению с дистиллированной водой. В 0,1 и 1-н. растворах хлоридов алюминий при стационарном потенциале растворяется в активном состоянии. С ростом концентрации хлоридов скорость анодного процесса возрастает. Можно полагать, что хлориды в количестве нескольких десятков миллиграммов на лктр увеличат скорость общей коррозии алюминия при комнатной температуре. Б дистиллированной воде за 4100 ч скорость коррозии алюминия. менее 0,0005 г/м сутки. Введение в воду 5 мг л хлоридов не изменяет скорости коррозии алюминия, однако в воде с 50 мг л хлорида скорость коррозии при той же продолжительности испытаний составляет 0,0018 г/м сутки. С увеличением концентрации хлористого калия от 0,0001 до 4-н. скорость коррозии алюминия непрерывно Ео. фастает 68].  [c.34]


Систематические исследования, проведенные со многими соединениями [5—11], показали, что ни одна из выдвинутых гипотез не является характерной особенностью для летучих ингибиторов, хотя некоторые из перечисленных механизмов иногда и проявляются. Изучая электрохимию ингибированных электролитов, связь между составом, структурой и физи-ко-химическихл ги свойства ми органических соединений, с одной стороны, и их защитными свойствами — с другой, удалось показать, что летучие ингибиторы предотвращают коррозию главным образом благодаря изменению кинетики электрохимических реакций, обусловливающих коррозионный процесс. На это указывает, в частности, сильное смещение в положительную сторону стационарного потенциала стали, выдержанной в атмосфере л-етучих ингибиторов, а также торможение анодной реакции ионизации металла и наступление пассивности [5, 6].  [c.157]

Описанию метода исследования коррозии с помощью вращающегося дискового электрода с кольцом, предложенного бпервые А. Н. Фрумкиным и Л. Н. Некрасовым для исследования кинетики электрохимических реакций, посвящена статья А. И. Оше и Б. Н. Кабанова. В ней на конкретных примерах иллюстрируются возможности этого метода для количественного анализа процессов коррозии и установления механизма анодного растворения (много-электронные и одноэлектронные стадии, растворение многокомпонентных сплавов, накапливание более благородного компонента на поверхности металла, перенос через пассивные слои и т. д.)  [c.5]


Смотреть страницы где упоминается термин Пассивность кинетика анодных процессов : [c.112]    [c.129]    [c.65]    [c.91]    [c.5]    [c.114]    [c.123]    [c.35]    [c.102]    [c.171]    [c.196]    [c.27]    [c.10]    [c.100]    [c.120]    [c.8]    [c.23]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.55 ]



ПОИСК



Анодная пассивность

Анодный

Анодный процесс

Кинетика

Кинетика анодных процессов

Кинетика процесса

Пассивность



© 2025 Mash-xxl.info Реклама на сайте