Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитное состояние, методы измерения

Имеются сведения о возможности использования для упомянутой цели при электрометрических обследованиях соответствующих методов и приборов, как например метода градиента потенциала постоянного тока метода бесконтактных определений тока в трубопроводе на основе измерения магнитного поля метода измерения напряженности собственного поля трубопровода, отражающего состояние металла трубы метода контроля состояния трубопроводов с помощью электромагнитных волн. Однако и эти дополнительные методы поиска опасных дефектов металла подземных трубопроводов надежного нахождения таких дефектов не гарантируют. Они, как следует из публикаций, прежде всего предназначены для выявления вероятных мест коррозии и определения участков подземного трубопровода, требующих более детальных обследований .  [c.113]


Работа электролизера характеризуется высокой температурой, агрессивным электролитом, в котором растворяется большинство металлов, большой силой тока и значительным магнитным полем. Поэтому для измерения параметров используются специальные методы и приспособления, которые подробно изложены в [8, 9]. Частично эти вопросы освещены в [10], а анализ современного состояния методов автоматического контроля и управления процессом производства алюминия и результаты разработки новых методов измерения изложены в работе [11]. Рассмотрим методы измерения основных параметров электролизера.  [c.355]

Переход в сверхпроводящее состояние, исследованное методом измерения электросопротивления в продольных магнитных полях при низкой плотности тока 72 ка м (7,2 а/см ), для Nb и Nb — О, Nb — N и Nb — Н, а также Nb — Д-твердых растворов показан соответственно на рис. 5, а, б и в.  [c.108]

Получив экспериментально кривые нагрева или охлаждения для сплавов одной системы, но различной концентрации, можно построить диаграмму ее состояния. Обычно для этого пользуются термическим методом, который является достаточно точным для исследования превращений, протекающих при переходе сплавов из жидкого состояния в твердое и обратно. Превращения, протекающие в сплавах в твердом состоянии (фазовые превращения в твердом состоянии), изучают более тонкими методами физико-химического анализа, среди которых наиболее распространенными являются рентгеноструктурный, микроструктурный, дилатометрический, а также методы измерения электросопротивления и магнитных свойств.  [c.117]

Метод измерения электрич. сопротивления в зависимости от темп-ры (или обработки) весьма эффективен при исследовании фазовых превращений, определении критич. точек. Магнитный структурный анализ применяют к изучению диаграмм состояния (в связи с магнитными превращениями), для количественного фазового анализа, исследования превращений в С., распада пересыщенных твердых растворов. Фазовые превращения исследуют также методами термич. и дилатометрии, анализа. Методом внутреннего трения исследуют диффузионные процессы, энергию активации выделения второй фазы, места ее выделения (вблизи границ или в толще образца). Распределение атонов в С., диффузионные процессы и т. д. исследуют также методом радиоактивных изотопов. Электронную струк-  [c.54]


Явление электромагнитной индукции позволяет создать методы измерения, не требующие механического контакта образца с элементом электрической цепи. Их развитие было предопределено необходимостью изучения химически активных веществ в твердом и жидком состояниях. Наибольшее распространение получил метод вращающегося магнитного поля.  [c.16]

Изменения электросопротивления и термоэлектродвижущей силы, возникающие при изменении магнитного состояния ферромагнитного образца, в большинстве случаев малы по величине, поэтому требуют применения чувствительных методов измерений.  [c.230]

Прямое использование цикла Карно для измерения температуры обычно приводит к большим экспериментальным погрешностям. Поэтому разработаны практические методы воспроизведения термодинамической температуры, в которых связь между измеряемой величиной и температурой выводят на основе законов термодинамики или статистической физики. К числу таких соотношений относятся уравнение состояния газа, закон Кюри для парамагнетиков, зависимость скорости звука в газе от температуры, зависимость напряжения тепловых шумов на электрическом сопротивлении от температуры, закон Стефана — Больцмана. Температурные шкалы, установленные с использованием указанных соотношений, зависят от свойств термометрического тела, что приводит к появлению таких характеристик шкалы, как воспроизводимость и точность. Кроме того, некоторые шкалы основаны на приближенно выполняющихся закономерностях возникает понятие инструментальной температуры (магнитной, цветовой и т. п.), отличной от термодинамической.  [c.172]

С помощью корреляционных экспериментов удалось измерить магнитные моменты возбужденных состояний некоторых ядер. Идея этих экспериментов состоит в том, что в промежутке между двумя каскадными переходами спин возбужденного ядра опрокидывался резонансным высокочастотным полем (ср. гл. И, 5). В частности, этим методом был измерен магнитный момент первого возбужденного уровня ядра кадмия оказавшийся равным —0,78. Наряду с у—7 измеряются р— -корреляции, а—у-корреляции, корреляции спинов и т. д.  [c.267]

В отличие от стационарных сооружений на судах находят наиболее широкое применение защитные установки с регулированием потенциала вместо управляемых вручную, поскольку требуемый защитный ток колеблется в зависимости от окружающей среды и рабочего состояния судна. Более подробные данные о преобразователях систем катодной защиты имеются в разделе 9. Защитные установки для судов должны быть особо прочными и стойкими против воздействия вибраций. Регулирование осуществляется при помощи магнитных усилителей, установочных трансформаторов с серводвигателем или по методу отсечки фазы с применением тиристоров. В отличие от защитных установок для трубопроводов защитные установки для судов могут иметь очень большую постоянную времени регулирования, поскольку требуемый защитный ток изменяется очень медленно. Защитные установки имеют в своем составе также приборы для измерения тока и потенциала на отдельных анодах с наложением тока и измерительные электроды. На крупных защитных установках ван нейшие параметры, кроме того, записываются.  [c.364]

Наличие у некоторых материалов связи магнитных свойств со структурным состоянием, механическими, электрическими и другими свойствами позволяет успешно использовать измерение магнитных параметров для промышленного контроля качества изделий. Установлено, что для низкоуглеродистых сталей наблюдается хорошая корреляция между механическими свойствами после отжига деформированного металла. Кроме того, исследования магнитных свойств [1, 2] показали наличие корреляции между механическими и магнитными свойствами, что позволяет магнитным методом контролировать твердость, предел текучести, относительное удлинение, а также балл зерна феррита и цементита [3, 4].  [c.93]


Под магнитным анализом подразумевается совокупность методов, применяемых для определения или изучения состояния ферромагнитных металлов и сплавов путём измерения их (часто относительных) магнитных характеристик, зависящих от вида обработки металлов и их химического состава.  [c.177]

Электролизер для получения алюминия — сложный электрометаллургический агрегат. Конструктивное и технологическое состояние процесса оценивается параметрами — геометрическими (длина, ширина, площадь, объем и т.д.), электрическими (напряжение, сила тока, мощность, электрическое сопротивление), магнитными (напряженность и индукция магнитного поля электромагнитная сила и т.д). Тепловые характеристики определяются тепловыми и энергетическими параметрами — температурой, теплопроводностью, теплоемкостью и пр. Значение каждого из этих параметров позволяет оценить те или иные особенности работы электролизера. Для измерения каждого из этих параметров применяются различные методы, специальные приборы и приспособления.  [c.355]

Диаграмма состояния s—Hg изучена методами дифференциального термического анализа и измерения магнитных свойств сплавов и приведена на рис. 111 по справочнику [X].  [c.211]

Диаграмма состояния Ег—Ni приведена на рис. 228 по данным работы [1]. Сплавы изготовляли плавкой в дуговой печи в атмосфере Ат, образцы отжигали в вакууме при 1000 °С от 24 ч до 26 суток, а также при 900 и 700 °С по три недели, после чего закаливали в воде. Исходными компонентами служили Ег чистотой 99,9 % (по массе) и Ni чистотой 99,96 % (по массе). Исследование выполняли методами микроструктурного, рентгеновского и термического анализов, измерением магнитных свойств.  [c.426]

Исследованию рассеянного усталостного повреждения посвящено большое количество работ. Трудно назвать какой-либо физический метод исследования структуры металлов (магнитный, рентгеновский, оптический, электронно-оптический, механический, акустический, голографический, калориметрический, энергетический и т. д.), который бы не обосновывался для исследования усталостного повреждения в металлах на стадии зарождения магистральной трещины. Однако нельзя утверждать, что эти исследования дали возможность разработать методы, позволяющие достаточно надежно прогнозировать на основе измерения характеристик структурного состояния металлов степень исчерпания долговечности образцов и деталей машин.  [c.32]

К неразрушающим методам диагностики, применяемым для оценки состояния сварных соединений паропроводов отечественных энергетических установок, относятся визуальный и измерительный контроль, измерение твердости, стилоскопирование, ультразвуковая и магнитопорошковая дефектоскопия, цветная дефектоскопия с проникающим излучением, вихретоковый метод, дефектоскопия аммиачным откликом, метод магнитной памяти металла и металлографический анализ с реплик (и/или срезов металла) и с помощью переносного микроскопа. Большинство этих методов применяется для диагностирования сварных соединений по месту их расположения на коллекторах котлов и трассах паропроводов в соответствии с требованиями по НТД и ПТД [3, 15, 18, 42, 53].  [c.146]

Наряду с прямыми дифракционными методами исследования жидкого состояния применяют и косвенные измерение магнитной восприимчивости, термо-э. д. с., электросопротивления, самодиффузии, растворимости, кинематической вязкости, переохлаждения, поверхностного натяжения на границе жидкость — пар. Эти методы позволяют выявить влияние малых добавок примесей на свойства жидкости. По влиянию модифицирующих добавок и примесей на различные свойства расплава можно судить об их активности. Критерием эффективности воздействия модификатора должна послужить концентрационная и температурная зависимость изменения того или иного свойства. Таким наиболее часто применяемым критерием является поверхностное натяжение на границе жидкость — пар.  [c.11]

Лауэвский класс симметрии I 189 Ликвационный квадрат I 18, 22 Ликвация I 18, 22 Линейные элементы 1 173 Людерса линии 2 201 Магнитосопротивление 2 83 Магнитная проницаемость 2 93, 108 Магнитное состояние, методы измерения  [c.456]

На рис. 21 ириведена функциональная схема батареи конденсаторов с элек1ромагнитиым устройством для калибровки ударных акселерометров. Это устройство может работать как по методу изменения скорости, так и по методу измерения силы. Принцип действия устройства основан на преобразовании накопленной электрической энергии в механическую при разряде батареи конденсаторов на выталкивающую катушку, которая возбуждает магнитное поле, взаимодействующее с расположенными вблизи выталкивающей катушки проводпиком-спа-рядом, сообщая ему мощный импульс ускорения. В исходном состоянии проводник-снаряд / устанавливают на. электромагнит батареи кондепсаторов2. При зарядке от источника постоянного тока 5 электронный выключатель 4 замкнут, через ограничивающий блок сопротивлений 5 заряжаются конденсаторы ё. Напряжение на конденсаторах контролируют при помощи специального измерительного контура. По достижении требуемого напряже-  [c.368]

С точки зрения квантовой теории, X. э. возникает как следствие снятия в магн. поле энергетич. вырождения атомных состояний с определ. значением проекции момента н является частным случаем многочисл. явлений интерференции состояний. X. э. используют в спектроскопии как метод измерения характеристики атомных уровней, где т—время жизни уровня, а g—гиромагн. отношение, X. э. лежит в основе измерения сверхслабых магнитных полей.  [c.397]


Анализ спонтанной намагниченности наночастиц, выполненный в [347] в приближении молекулярного поля, показал наличие размерной зависимости температуры Кюри. Согласно [347], понижение температуры Кюри становится заметно для частиц с размером J < 10 нм для наночастиц с < / = 2 нм снижение Тс в сравнении с массивным металлом не превышает 10 %. Напротив, из результатов изучения термодинамики суперпара-магнитных частиц методом Монте-Карло [348] следует, что из-за отсутствия в них явно выраженного магнитного перехода нельзя говорить о каком-либо смещении температуры Кюри в зависимости от размера частиц. Действительно, переход наночастиц из суперпарамагнитного состояния в парамагнитное происходит плавно, без явно видимой резкой точки магнитного превращения. Измерения температуры Кюри наночастиц Ni d = = 2,1—6,8 нм) [349], намагниченности насыщения и температуры Кюри пленок Fe толщиной >1,5 нм [350], намагниченности насыщения наночастиц Fe d - 1,5 нм) [351] и Со (t/ = 0,8 нм) [352] показали, что эти величины в пределах погрешности измерений совпадают с таковыми для массивных металлов. Согласно [10, И], температура Кюри ферромагнитных частиц при уменьшении их размера до 2 нм не отличается от массивных металлов. Однако в [353] обнаружено понижение на 7 и 12 % для наночастиц Ni диаметром 6,0 и 4,8 нм соответственно. Следует отметить, что явление суперпарамагнетизма существенно затрудняет исследование размерных зависимостей коэрцитивной силы, намагниченности насыщения и температуры Кюри ферромагнитных наночастиц.  [c.99]

Кроме того, за последние несколько лет была значительно усо вершенствована экспериментальная техника и накоплено много важных экспериментальных данных, что также обогатило интересующую нас область новыми фактами. Исследование критических явлений сопряжено со значительными трудностями. Для проблемы перехода газ — жидкость основной метод состоит в точном измерении давления, плотности и температуры (получение уравнения состояния), а также удельной теплоемкости. Оказывается, что поведение типа степенного закона, позволяющее определить критические показатели, имеет место лишь очень близко от критической точки, скажем при 0 < 10" . Даже определение критических параметров Т , Ро с с точностью, удовлетворяющей потребностям эксперимента, сопряжено с чрезвычайно большими трудностями. Поэтому требуется очень точное определение температуры (погрешность АТ/Тс не выше 10" ). Кроме того, благодаря большой теплоемкости су теоретически расходится) время установления равновесия в системе очень велико (порядка дней). Большое значение сжимаемости также создает серьезные проблемы влияние гравитации на систему становится очень сильным, она создает градиент плотности, который должен быть очень точно учтен. Весьма важные для магнитных систем экспериментальные измерения намагниченности и восприимчивости и проведение экспериментов по рассеянию нейтронов также сопряжены с весьма существенными трудностями их преодоление требует большого искусства и тщательности. Мы не можем вдаваться здесь в подробности и рекомендуем читателю обратиться к оригинальным работам и обзорам.  [c.357]

Последний метод измерений, который мы рассмотрим в этом разделе,— это циклотронный резонанс, возникающий при наличии магнитного и электрического полей. В отличие от двух рассмотренных выше резонансных явлений, где резонанс происходит при переходах между квантовыми состояниями системы, циклотронный резонанс является настоящим временнйм резонансом ). Если перпендикулярно к образцу (фиг. 29, а) приложено магнитное поле, то электроны будут вращаться в плоскости ху с циклотронной частотой, которая определяется формулой (35) и для свободных электронов составляет примерно 10 Я сек . Однако для наблю-  [c.104]

Это можно иллюстрировать, сравнивая начальный наклон кривой критического магнитного поля по измерению сопротивления (дНсв1дТ) т- т = —42,20 10 ав/м (—530 э/град) для высокой чистоты, с величиной —32,17 10 ав/м (—403 э/град), полученной из магнитных измерений (рис. 12), или с величиной —33,04- 10 ав/м (—415 э/град), полученной калориметрическим методом [28]. Для ниобия в состоянии поставки (дНсн/дТ) равно —90,76- 10 ав/м (—1140 э/град).  [c.119]

Состояние деталей тепловозов проверяют наружным осмотром, при помощи лупы, обстукиванием, меловым способом (смачиванием керосином и нанесением пленки из мела), опрессовкой керосином, маслом и другими методами. Наиболее ответственные детали после изготовления их на заводах ив процессе ремонта тепловозов в депо и на тепловозоремонтных заводах проверяют магнитными и ультразвуковыми де ктоскопами, а также гаммаграфированием и цветным методом, измерением размеров деталей, зазоров, натягов.  [c.36]

Во-первых, можно построить всю диаграмму состояния по ряду горизонтальных разрезов. Для этого можно последовательно для ряда разных темп-р провести измерения любого физич, свойства сплавов разного состава. При переходе от сплава с одним типом строения к сплаву с другим строением любое физич, свойство изменится б. или м, резким скачком. На этом положении, как это особенно ярко отметил акад. Н. Курнаков, основан весь физико-химич. анализ. Между двумя соседними по концентрации сплавами, при переходе от одного из к-рых к другому обнарушивается скачкообразное изменение свойства, мы помещаем точку превращения Получив ряд таких точек для разных темп-р, соеди-няем их одной сплошной линией превращения. Подобного рода построение дано на фиг. 3, где горизонтали показывают исследованные температуры, точки на горизонталях соответствуют концентрациям исследованных сплавов, а крестики между двумя точками указывают, между какими сплавами было отмечено резкое изменение свойства. На одном горизонтальном разрезе может оказаться несколько точек превращения. В атом случав и на диаграмме состояния будет несколько линий. В качестве измеряемого физич, свойства можно взять твердость, временное сопротивление, сопротивление удару, электропроводность, магнитную индукцию, темп-рные коэф-ты указанных свойств, электрохимич, потенциал, плотность, коэф, линейного расширения и т, д. В аависимости от величины скачка в изменении того или иного свойства в момент изменения состояния, а также в зависимости от чувствительности метода измерения того или иного свойства в разных случаях оказывается наиболее выгодным привлечь различные свойства к исследованию изменений в строении. Особенно хорошие результаты обычно дают измерения электропроводности и ее темп-рного коэф-та, твердости и магнитных свойств. Нек-рые из методов измерения физич. свойств, как напр, метод электропроводности, м. б. применены к исследованию любых изменений состояния как в жидких, так и твердых металлах. Другие методы, как напр, метод твердости, по самому своему определению могут применяться только при исследовании превращений в твердом состоянии.  [c.378]

Высокая степень точности измерения изменения энергии методом резонансного поглощения -у-лучей без отдачи позволяет использовать этот метод для обнаружения и изучения весьма тонких эффектов, апример для определения магнитных диполь-ных и электрических квадрупольных моментов возбужденных состояний ядер, для исследования влияния электронных оболочек на энергию ядерных уровней. В 1960 г. Паунд и Ребка использовали резонансное поглощение у-лучей без отдачи в Fe для измерения в лабораторных условиях гравитационного смещения частоты фотонов, предсказываемого в общей теории относительности Эйнштейна. Эффект удалось обнаружить при удалении источника от поглотителя (по высоте) всего на 21 м.  [c.179]


Для контроля состояния труб, в первую очередь насосно-компрессорных и обсадных, применяют метод кавернометрии. При этом используют механические или магнитные каверномеры. В основе этих приборов лежит принцип механических щупов. Приборы предназначены главным образом для измерения общей и язвенной (питтинговой) коррозии, но могут быть использованы для определения искривления или смятия труб.  [c.94]

Исследование взаимодействия Fe с Zr начато еще в 1928 г. Х , однако окончательно диаграмма состояния системы Fe—Zr не построена до сих пор. Различные исследователи [1—22] сообщают об образовании промежуточных фаз, число, стехиометрия и кристаллическая структура которых не всегда совпадают. Для исследования, как правило, были использованы материалы высокой чистоты — иодидный цирконий, электролитическое или армко железо спланм выплавляли в дуговой печи в атмосфере аргона, в индукционной печи во взвешенном состоянии в атмосфере гелия, в электроннолучевой печи в вакууме. Исследования проводили методами конического, рентгеновского фазового, дифференциального терм нм сякого анализов, а также измерением твердости, магнитного аналн.за, Мессбауэровской спектроскопии и др.  [c.586]

Диаграмма состояния Ga—Mn, представленная на рис. 330, построена в работе [1]. Образцы готовили из компонентов Ga чистотой 99,9 и Мп чистотой 99,99 % (по массе) по данным работы [1] Ga чистотой 99,999 и Мп чистотой 99,9 % (по массе) по данным работ 12 - 3], в алундовых тиглях и исследовали методами дифференциального, термического, рентгеновского анализа и измерения магнитных свойств. Различия в числе промежуточных фаз в работе [1] и в более Ранних работах [4, 5] наблюдаются в основном в области концентрации 60-100 % (ат.) Мп.  [c.615]

Диаграмма состояния Gd—Ри изучена частично и представлсип рис. 379 по данным работы [I]. Исследование выполнено методам микроструктурного, рентгеновского, термического анализов, а также измерением электропроводности и магнитных свойств. Gd  [c.716]

Обычный метод исследования заключается в определении намагниченности насыщения в зависимости от температуры вплоть до температуры, при которой ферромагнетизм исчезает. Есл1И сплав привести отжигом в равновесное состояние, а затем закалить, то данные магнитных измерений дадут сведения о структуре сплава при температуре закалки при условии, что во время измерений не происходит структурных изменений.  [c.304]

Баринов и др. [516] исследовали методами рентгеноструктурного анализа, мессбауэровской спектроскопии и магнитных измерений изменение структурно-фазового состояния смеси порошков железа и бора эквивалентного состава при механической обработке в центробежно-планетарной мельнице. Установлено, что процесс механического сплаво-  [c.322]

Заключительным этапом термической обработки является контроль. Кроме измерения твердости и микроструктурного анализа находят применение методы магнитного анализа. В Мароч- IV нике приведены данные, характеризующие магнитные свойства стали в отожженном и закаленно-отпущенном состоянии.  [c.234]


Смотреть страницы где упоминается термин Магнитное состояние, методы измерения : [c.440]    [c.369]    [c.132]    [c.360]    [c.80]    [c.315]    [c.321]    [c.203]    [c.587]    [c.544]    [c.568]    [c.256]    [c.257]    [c.651]    [c.66]    [c.107]   
Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.0 ]



ПОИСК



Измерение методы

Магнитное состояние, методы измерения измерительным генератором

Магнитное состояние, методы измерения магнитометрический

Метод магнитный

Состояние, измерение



© 2025 Mash-xxl.info Реклама на сайте