Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокации в кристаллах и различные свойства кристаллов

И. В. Батенин и др. [36] исследовали влияние облучения на механические свойства металлов. После облучения микротвердость всех исследованных металлов и сплавов повысилась. Однако относительное изменение твердости было неодинаковым для различных материалов. Авторами высказано предположение, что при нейтронном облучении упрочнение связано не только с возникновением дисперсной структуры зерна, но и с изменением свойств кристаллов в микрообластях, повышением сопротивления движению дислокаций. Изменение свойств в случае облучения обусловлено наличием точечных дефектов (типа вакансия — внедренный атом ) и характером их распределения.  [c.238]


При обычном пластическом деформировании кристаллической решетки имеют место два взаимосвязанных процесса упрочнение кристалла и пластический сдвиг. Явление упрочнения в основном обусловливается упругим взаимодействием дислокаций, оставшихся внутри кристалла, в то время как пластический сдвиг связан с линейными дефектами, вышедшими на поверхность по той или другой системе скольжения. Прочностные и пластические свойства металлов характеризуются кривыми упрочнения а = = / (е), где а — скалывающие напряжения в определенной системе скольжения е — деформация кристалла. Обычно кривая упрочнения имеет три четко выраженные стадии, каждая из которых связана с различным характером движения и взаимодействия дислокаций.  [c.27]

Описанные свойства дислокаций и изменения, вносимые их присутствием в свойства кристаллов, послужили основой для разработки экспериментальных методов наблюдения дислокаций. Представления о дислокациях в кристаллах и их теоретическое изучение интенсивно развивались в период (1Й4— 1950 гг.), предшествующий непосредственному наблюдению дислокаций (начиная с 1953 г.), это создало благоприятные условия для экспериментаторов. Предсказания теории дислокаций во всех деталях были подтверждены при их экспериментальном наблюдении — случай довольно редкий в истории физики. В настоящее время экспериментальное изучение дислокационных структур кристаллов различных типов идет широким фронтом. Ниже приводятся иллюстрации, показывающие возможности некоторых разработанных к настоящему времени экспериментальных методов [2, 9, 10, 20].  [c.448]

Для изучения строения и свойств отдельных дислокаций и также различных дислокационных структур наиболее часто применяют электронно-микроскопическую методику, основанную на наблюдении дислокаций по дифракционному контрасту, возникающему из-за искажения решетки вблизи ее ядра. Эта методика позволила наблюдать расщепление дислокаций и образование расщепленных узлов (рис. 13.32), предсказанное теоретически. С ее помощью можно наблюдать изменение дислокационной структуры в ходе пластической деформации (см. рис. 13.36) при механических, тепловых и других воздействиях. Если методами травления, декорирования п поляризационно-оптическим можно наблюдать дислокации в кристаллах, где плотность дислокаций р см/см (суммарная дл та дислокационных линий в единице объема) не превосходит 10 —10 1/см , с помощью электронного микроскопа можно наблюдать структуры с плотностью дислокаций до 10 2 1/см . Однако недостатком метода электронной микроскопии является необходимость изготовления из исследуемых кристаллов тонкой фольги  [c.453]


По вопросам, относящимся к протяженным дефектам, которые встречаются в большинстве типов кристаллов, существует обширная литература. Эти дефекты имеют фундаментальное значение при рассмотрении физических и химических свойств твердых тел и играют важную роль в технологии. Наиболее простые и хорошо-известные дефекты — это дефекты упаковки, двойники и различные виды дислокаций. Сюда можно добавить также кластеры дефектов, агрегаты примесей, двумерные скопления отдельных атомов, как в зонах О — Р, когерентные и некогерентные фазы, скопления вакансий, пустоты, центры упорядочения и т.д.  [c.392]

Попытаемся наметить путь перехода от общей теории, схематично изложенной выше, к проблеме самоорганизации дефектной структуры кристаллических материалов при их деформации. К сожалению, до последнего времени теоретически рассмотрены в работах И. Пригожина лишь процессы самоорганизации в химических и биохимических системах. Для них основными параметрами, фигурирующими в кинетических уравнениях, являются концентрации реагирующих веществ и коэффициенты диффузии. Аналогично деформируемому кристаллу с дефектами можно рассматривать концентрацию (плотность) различных дефектов (дислокаций, дисклинаций, пор, трещин и т. д.). При этом свойства хорошего материала (в котором отсутствуют дефекты) могут оказать лишь некоторое количественное, но не качественное влияние на поведение дефектов при деформации. Иными словами, кинетические уравнения будут одни и те же (но с разными коэффициентами) для широкого класса материалов и условий деформации.  [c.85]

Подробные исследования предельных состояний деформации и прочности чистых металлов, основанные на испытаниях монокристаллов, убедительно показывают, что дефекты различных размеров и различного характера имеются во всем объеме кристаллов металла. В соответствии с их размерами и характером эти дефекты оказывают неодинаковое влияние на развитие пластических деформаций и разрушений путем отрыва. Без знания роли этих дефектов невозможно понимание природы основных механических свойств технических металлов. Ввиду этого необходимо постепенно разрабатывать новую теорию деформации и прочности металла, в которой теория макродеформаций будет основана на концепции среды, состоящей из движущих дислокаций и проникнутой сетью стойких точечных дефектов и границ с повышенным сопротивлением деформации.  [c.139]

Реально структура кристаллов отличается от приведенных идеальных схем, в них имеются дефекты. Точечными, нуль-мерными (по протяженности), дефектами являются пустые узлы, или вакансии (рис. 6, а) и межузельные атомы (рис. 6, б) число этих дефектов возрастает с повышением температуры. Важнейшими линейными (одномерными) дефектами являются дислокации (краевые и винтовые), представляющие как бы сдвиг части кристаллической решетки (см. линию ММ на рис. 6, в). Поверхностные (двухмерные) дефекты определяются наличием субзерен или блоков 1, 2 внутри кристалла (рис. 6, г), а также различной ориентацией кристаллических решеток зерен 3, 4 (рис. 6, д). По границам зерен решетка одного кристалла переходит в решетку другого, здесь нарушена симметрия расположения атомов. Дефекты кристаллов оказывают существенное влияние на механические, физические, химические и технологические свойства металлов (см. пр. 4).  [c.19]

В книге кратко излагаются основные вопросы современной теории атома и электронной структуры кристаллов, описываются кристаллические структуры идеальных и реальных кристаллов, рассматривается теория дислокаций и физические свойства металлов и сплавов. Обсуждаются закономерности взаимодействия между компонентами в сплавах и вопросы фазового равновесия в различных системах. Подробно описываются промежуточные фазы. Книга рассчитана иа широкий круг инженеров заводов и научно-исследовательских институтов, а также на студентов и аспирантов вузов, специализирующихся по металлургии, металловедению и физике металлов.  [c.4]

Увеличить количество структурных дефектов можно за счет легирования металла, т. е. растворения в его кристаллической решетке других элементов, а также путем термической обработки. В настоящее время широкое распространение получил новый способ обработки металлов — термомеханическая обработка, при которой значительно возрастает количество структурных дефектов и обеспечивается упрочнение металла в результате прекраш ения движения дислокаций. Из сказанного следует, что плотность расположения атомов неодинакова по различным плоскостям и направлениям кристаллической решетки. Свойства каждого кристалла (химические, физические, механические) зависят от направления кристаллической решетки.  [c.10]


За последние десять лет наше представление о взаимодействии дислокаций с различными дефектами, возникающими при закалке и старении, в значительной степени зависело от исследований явления закалочного упрочнения. Механизмы взаимодействия дислокаций с призматическими петлями и тетраэдрическими дефектами упаковки изучались особенно подробно. В результате этого механизмы упрочнения алюминия и золота, закаленных с температуры выше критической и затем состаренных, уже довольно хорошо известны. Хотя закалочное упрочнение наблюдается также и в других металлах, как, например, в меди, дефекты, обусловливающие упрочнение, все еще полностью не изучены. Влияние закалки на другие механические свойства, кроме предела текучести, мало изучены. Это обусловлено, с одной стороны, недостаточным экспериментальным материалом, а с другой стороны, неполным пониманием механизма наклепа отожженных кристаллов. Исследования на сплавах и других металлах (кроме г. и. к. структур) весьма недостаточны.  [c.266]

Строение реальных кристаллов. Исследованиями структур кристаллов доказано, что указанные выше кристаллические решетки являются идеальными кристаллами. Реальные кристаллы имеют значительные отклонения в строении решетки (фиг. 5). Причины, вызывающие искажение кристаллической решетки, различны температурные условия, при которых образуются кристаллы (нагрев и скорость охлаждения, условия охлаждения), напряжения в металле, вызываемые механическими воздействиями. При этом происходят смещения атомов в кристалле, называемые дислокациями, образуется решетка с узлами, не заполненными атомами (фиг. 6). Эти дефекты в кристаллической решетке приводят к резкому ухудшению свойств металлов, особенно механических, благодаря чему область  [c.11]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]

Характерной особенностью дефектной структуры облученных кристаллов являются хаотичность в расположении точечных и объемных барьеров и неоднородность создаваемых ими полей напряжений. Но нельзя считать распределение дефектов в кристаллах изотропным. На начальной стадии облучения кристаллов наблюдается сильная анизотропия в распределении радиационных дефектов и анизотропия влияния радиации на механические свойства в )азличных кристаллографических направлениях. О. А. Троицкий 151 на монокристаллах цинка обнаружил в плоскостях базиса более высокую скорость накопления радиационных дефектов и большее влияние радиации на сопротивление движению дислокаций в базисных плоскостях по сравнению с другими кристаллографическими плоскостями. В. К. Крицкая с сотрудниками [16] по изменению интегральных интенсивностей рентгеновских рефлексов обнаружила ориентационную зависимость в распределении радиационных дефектов в облученных электронами монокристаллах молибдена и как следствие — анизотропию величины эффекта повышения сопротивления деформированию в различных кристаллографических направлениях монокристаллов молибдена.  [c.63]

Неоднородное распределение дислокаций в объеме выращиваемого монокристалла вызывает появление разницы концентраций присутствующих СТД между областями с различной плотностью стоков. Если при этом подвижность СТД достаточно высока, то непосредственно в процессе выращивания происходит перераспределение дефектов между областями с различной плотностью стоков (дислокаций). В монокристаллах полупроводниковых соединений такое перераспределение приводит к формированию макронеоднородности по составу в пределах области гомогенности соединения, а в монокристаллах элементарных полупроводников - макронеоднородности по плотности вещества. Величина возникающей неоднородности зависит не только от величины разницы в различных участках кристалла, но и от абсолютных значений Перераспределение СТД между областями кристалла с разной является основной причиной возникновения в нем характерной макронеоднородности в распределении электрофизических свойств, хорошо коррелирующей с характером распределения дислокаций. Особенно четко это проявляется в нелегированных полуизолирующих монокристаллах GaAs.  [c.60]

Кроме того, в данной работе впервые проведена оценка активационных параметров в области деформации ниже макроскопического порога хрупкости Si. При этом полученные значения этих параметров, в частности, низкое критическое напряжение сдвига, малая величина энергии активации, большая величина активащюнного объема и более высокая подвижность дислокаций, свидетельствуют об аномальности механических свойств в приповерхностном слое Si [307- 314]. Обращает на себя внимание тот факт, что аномальность механических свойств проявляется именно в тонком поверхностном слое кристалла [рис. 101], глубина которого согласуется с данными работ по тонкой абразивной обработке полупроводников [96, 97 и их статическому нагружению инденторами различной формы [98- 100, 105]. Особая деформационная способность приповерхностного слоя по сравнению с объемом кристалла находит подтверждение в работах по абразивной обработке полупроводников [96, 97, 102, 553, 554], в которых показано, что при переходе к определенной степени дисперсности абразива (для Si порядка 0,25 мкм [96, 97]) можно полностью избежать хрупких трещин и получить чистые единичные дислокации. При более крупных частицах абразива, как правило, наблюдается хрупкое разрушение [96, 97, 102, 553, 554]. Аналогичная закономерность проявляется и при статическом нагружении полупроводниковых кристаллов, когда лишь при строго определенной величине нагрузки может протекать чисто пластическая деформация [98—100, 105], а при большей величине нагрузки, которая вовлекает в пластическую деформацию соответственно более глубокие слои приповерхностного слоя, наряду с образованием дислокаций наблюдается процесс хрупкого разрушения[102,554]. Кроме того, следует отметить, что именно в приповерхностных слоях кристаллов (порядка 2—5 мкм для S1 и Ge) проявляются обычно фотомеханический, электромеханический и концентрационный эффекты [423, 430, 431]. При объяснении природы этих эффектов в работах [430, 431] предполагалось понижение барьеров Пайерлса под действием тех или других внешних факторов (электрическое поле, освещение и т.п.). Поскольку в данной работе указанные внешние факторы отсутствовали, на основании полученных результатов можно 178  [c.178]


Таким образом, анализируя механизм формирования структурных зон в слитке и причины появления наиболее распространенных дефектов, можно наметить пути получения качественного слитка. Чем больше загрязнен металл, тем в большей степени свойства его зависят от величины зерна. Наилучшие свойства обеспечивает слиток с однородной плотной мелкозернистой структурой и равномерным распределением примесей и дислокаций по объему. В этом плане идеальной была бы равноосная мелкозернистая структура, при которой однородность рассредоточения примесей максимальна, а вероятность возникновения напряжений, связанных с различной ориентацией и зачастую превышающих силы сцепления [85], минимальна. Но практически получить слиток с подобной структурой удается в очень редких случаях. Легче регулировать соотношение структурных зон и величину зерна в каждой из них. Наружная зона замороженных кристаллов (если она образуется) из-за наличия поверхностных дефектов часто удаляется либо механическим путем, либо окислением в нагревательных колодцах. Центральная равноосная зона во многих случаях разнозерниста, загрязнена примесями и поражена пористостью. Для ее улучшения пытаются использовать различные методы воздействия на процесс кристаллизации слитка. Столбчатая зона более однородна, если границы кристаллов не обогащены хрупкими фазами. При направленной кристаллизации непрерывного плоского слитка можно получить однородную плотную столбчатую структуру. Желательно иметь тонкие кристаллы, приближающиеся к нитевидным (Е. И. Гиваргазов, Ю. Г. Костюк [84, с. 242—249]), с малой плотностью дислокаций, и чтобы границы их не были обогащены хрупкой составляющей. Чем тоньше столбчатые кристаллы, тем более равномерно распределены примеси в слитке. При помощи модификаторов можно получать слитки, состоящие из тонких столбчатых кристаллов, регулировать соотношение зон и величину зерна в них. Модифицирование, кроме того, оказывает влияние на дегазацию и повышение механических свойств, что приводит к уменьшению пористости и трещин в слитке.  [c.106]

На недостаточность рассмотрения только одного размерного фактора при определении принадлежности системы к наномиру было отмечено в ряде работ [8-12]. М.И, Алымовым обращено внимание на тот факт, что при идентификации НСМ следует учитывать, кроме размерного фактора, также и состояние границ раздела с учетом плотности дислокаций. Сделан вывод, что к НСМ следует отнести только материалы с больщеугловыми границами [8,9]. И.Д. Морохов и др. [10] относят к НСМ материалы, у которых наибольший размер одного из структурных фрагментов меньще либо равен размеру, характерному для физического явления, например для прочностных свойств - размер бездефектного кристалла, для магнитных свойств - размер однодоменного кристалла для электропроводности - длина свободного пробега электронов. По физической классификации наноматериалов предельные значения размеров структурных элементов различны для разных свойств и материалов [10]. В табл. 5.1. приведены расчетные значения размеров частиц и зерен, в которых отсутствуют призматические дислокационные петли и краевые дислокации. Экспериментальные исследования структуры малых частиц методами просвечивающей электронной микроскопии показали отсутствие в них дислокаций.  [c.150]

Для понимания свойств металлов важно также знать, что их реальная кристаллическая структура не идеальна. Во-первых, в пространственной сетке ион-атомов, изображенной в упрощенном виде на рисунке 1, встречаются изъяны разного рода (пустые - места, чужеродные включения). Во-вторых, одни участки или слои сетки различным образом смещены по отношению к другим участкам или слоям (так называемая дислокация). В-третьих, зарождающиеся при застывании расплавленного металла кристаллы при их роете давят друг на друга, искажая естественную форму и образуя неправильной формы конгломераты (так называемые кристаллиты), часто с пустотами между ними. Получающиеся за счет всего этого швы и неоднородности в металлах ухудшают их свойства и рано или поздно могут привести к коррозионным разрушениям по этим швам . Доказано, что теоретически рассчитанная прочность идеальных кристаллов данного металла и его практическая прочность расходятся иногда в десятки и сотни раз (1). Это цроверено на выращенных специальными сп с0бами идеальных нитевидных металлических кристаллах ( усах ). Очевидно, искусственное получение идеадьной кристаллической структуры, повторяющей без  [c.42]

Большой вклад был внесен А. В. Степановым в развитие дислокационных представлений. Совместные работы с Э. М. Надгор-ным по динамике отдельных дислокаций позволили выяснить механизмы движения дислокаций в различных условиях. К этим же исследованиям примыкает серия работ по выращиванию и механическим свойствам нитевидных кристаллов, имеющих прочность, близкую к теоретической.  [c.5]

Макронапряжения или напряжения первого рода уравновешиваются в макрообъемах, соизмеримых с размерами детали. В этих объемах материал рассматривается как изотропный. Микронапряжения или напряжения второго рода распространяются в микрообъемах, соизмеримых с размерами зерен, блоков, групп зерен. Их появление вьпывается анизотропией кристаллов, ориентацией кристаллографических плоскостей, наличием различных фаз, дислокаций, взаимодействием соседних зерен между собой. Если соседние зерна представляют собой различные фазы с разными механическими и физическими свойствами, то при деформации или изменении температуры возникают межфазные ми1фонапряжения. Причиной межфазных температурных напряжений является различие коэффициентов линейного расширения этих фаз вдоль разных кристаллографических направлений.  [c.53]

МБЖЗЁРЕННЫЕ ГРАНИЦЫ — поверхности раздела между различно ориентированными областями (зёрнами) поликристалла. Многие фпз. свойства зависят от числа и строения М. г. К нйм относятся как свойства, связанные с переносом электронов, фононов, атомов и др. (электропроводность, теплопроводность, диффузия), к-рые рассеиваются на М. г., так и свойства, зависящие от взаимодействия между М. г. и дислокациями- (механич. свойства), стенками магн. доменов (магн. жесткость), вихрями в сверхпроводниках (кри-тич. ток и поле в жёстких сверхпроводниках) и т. п. Как и внеш. поверхность, М. г. являются двумерными дефектами, вносящими воз.мущение в эяергетич. спектр Кристалла (см. Поверхность).  [c.87]

Учение о дислокациях получило в настоящее время широкое развитие, подробно разрабатываются вопросы теории, методы выявления несовершенств этого типа и приложения теории к различным вопросам металлофизики и металловедения. Именно эта группа вопросов, с одной стороны, объясняющая особенности строения и свойства реального кристалла, а с другой — оперирующая физико-математическим аппаратом, дала много точек соприкосновения для металлофизиков и металловедов. Основные представления теории дислокаций изложены в специальных монографиях и обзорах, например [16, 17, 19, 49—53, 429] некоторые приложения рассмотрены в главе VHl, поэтому здесь они рассматриваться не будут.  [c.71]

При увеличении длительности работы питтинга возможно появление предельного тока (например, при потенциале д) вследствие диффузионного ограничения доставки в глубокий питтинг компонентов раствора и отвода продуктов реакции, и тогда анодная кривая вырождается в кривую Е Е Е, — что отмечалось при исследовании модельного питтинга [41, с. 77 71]. При потенциале коррозии Е , задаваемом окислительными свойствами среды (в условиях питтингообразования к более положительный, чем пт) происходит возникновение питтинга в результате взаимодействия адсорбированных активирующих анионов, например, хлор-ионов с пассивной пленкой в отдельных точках. Локальность процесса обусловлена негомогенностью поверхности металла и оксидной пленки и связанной с этим неравномерностью адсорбции анионов на пассивной пленке. Начальной стадии возникновения питтинга соответствует растворение структурных элементов поверхности, имеющих менее совершенную пассивацию. Несовершенство пассивной пленки может быть связано с каким-либо искажением структуры металла наличием границ зерен, различного рода включениями (металлическими и неметаллическими), выходом на поверхность кристаллов с менее благоприятной для пассивации ориентацией или же более тонкой неоднородностью, как, например, наличием дислокаций и включением в решетку инородных атомов. Местные изменения стойкости пассивной пленки могут быть вызваны также понижением концентрации основного пассивирующего компонента (например, хрома в коррозионностойких сталях), или дополнительных легирующих компонентов (Si, Мо и т. п.). На этой стадии отсутствуют заметные концентрационные изменения электролита и омические падения потенциала. Питтинг еще не имеет характерной полусферической формы, определяемой этими параметрами.  [c.91]


Прочностные свойства сплава практически не изменяются, если не считать увеличения 0,2 с72 до 78кгс/мм2 при нагреве до 480°С. Это упрочнение, вероятно, можно объяснить образованием небольшого количества различно ориентированных у-кристаллов. В конце интервала а- у имеет место разупрочнение сплава из-за появления глобулярного аустенита. Вероятно, у-плас-тины единой ориентации, формирующиеся параллвлы1ыми рядами вдоль габитусной плоскости, близкой к 111 у и одинаковой для каждого сг-кристалла мартенситного. пакета, не являются препятствием для дислокаций, перемещающихся в плоскости типа 110 д, параллельной плоскости габитуса мартенсита.  [c.146]

Проблема еще более усугубляется тем, что реальные среды практически никогда не бывают однородными и населенными лишь дислокациями или точечными дефектами. На развитых стадиях деформации кристаллы характерЮуются сложным иерархическим строением, часто состоят из зерен, фрагментов, ячеек и блоков, включений различной природы и пр. Опыт показывает, что в таких кусочных средах, составленных из фрагментов разного масштаба, в том числе и содержащихся друг в друге , кроме виутрифрагментного массопереноса происходят интенсивные относительные смещения и повороты частей материала как целого, движение межфазных и межфрагментных границ и т. д. Попытки описать и понять эти явления в терминах классических представлений крайне непродуктивны. Однако главное заключается в том, что законы эволюции этих систем носят, если так можно выразиться, самостоятельный характер и непосредственно не вытекает из свойств одиночных решеточных дефектов, например, типа дислокаций и даже дисклинаций.  [c.4]

В общем случае внешние воздействия могут создавать в кристалле сложное напряженное состояние, которое не исч зает после снятия этих воздействий. При этом кристалл может дробиться, изменяя размеры зерен, фрагментов и блоков. Эти размеры могут существенно отличаться для разных случаев. Кроме того, в материале может возникать большое количество различного типа дефектов кристаллической решетки, в частности дислокаций и дисклинаций, характеризующихся широким спектром возможных равновесных конфигураций и, как отмечалось выше, определяющих многие физические свойства твердых тел.  [c.227]

В 1955 г. впервые в мировой науке под руководством А. В. Степанова О-В. Клявиным были начаты и успешно проведены исследования механических свойств металлов и сплавов при температурах жидкого гелия (4—1° К), которые в дальнейшем оказались крайне необходимыми для космической и других отраслей современной техники, а также для построения теории пластичности и прочности твердых тел. Удалось обнаружить ряд новых явлений, сопровождающих пластическое течение и разрушение твердых тел. В дальнейшем непосредственно при гелиевых температурах был подробно изучен механизм пластической деформации скольжения по различным системам плоскостей в монокристаллах галоидов щелочных металлов и обнаружены особеннок-сти движения п размножения дислокаций, которые весьма важны для понимания природы пластичности кристаллов в целом.  [c.5]

Из твердых шаров можно составить плотно упакованный кристалл — упорядоченную систему, в которой каждый атом имеет ближайших двенадцать соседей. Тогда под жидкой фазой следует понимать кучу случайно разбросанных шаров, упакованных однородно и по возможности более плотно, по без дальнего порядка. Разумеется, тот факт, что эта система течет при наличии медленно меняюш ихся напряжений, исключительно важен для физики однако к обсуждаемому нами вопросу он отношения не имеет движения такого типа происходят гораздо медленнее, чем явления электронного переноса и т. п. Эта простая идея, выдвинутая первоначально Берналом [54] (см. также [55]), играет теперь решаюш ую роль при любой попытке качественной или количественной трактовки физических свойств жидкости [56]. Предложенная Берналом модель топологического беспорядка в простой жидкости вытесняет различные другие топологические концепции, основанные на феноменологических построениях типа дырок в решетке , паракристаллов , существенных структур , дислокаций и др. [57] ссылки па соответствующие работы изредка все же встречаются в разных местах этой книги.  [c.97]

Для атомов металлов характерно образование структур, в которых число связей превышает число валентных электронов, т. е. металлическая связь является ненасыщенной. При такой свя и существует стремление к образованию структур плотнейших (типа шаровых) и плотных упаковок. РсноТвные и характерные для металлов свойства — высокая электропроводность и металлический блеск свидетельствуют о том, что валентные электроны обобществляются и могут двигаться в объеме всего кристалла. С особенно стями структуры атомов металлов и, в частности, с наличием свободных электронов, движущихся по всему объему кристалла, связана большая, чем в кристаллах неметаллических соединений, подвижность различных дефектов кристаллической решетки (точечных и линейных дислокаций).  [c.10]


Смотреть страницы где упоминается термин Дислокации в кристаллах и различные свойства кристаллов : [c.59]    [c.76]    [c.308]    [c.28]    [c.104]    [c.11]    [c.245]    [c.47]    [c.437]    [c.511]    [c.153]   
Конструкционные материалы Энциклопедия (1965) -- [ c.276 ]



ПОИСК



Дислокации в кристаллах

Дислокация

Дислокация Свойства

Кристаллы свойства



© 2025 Mash-xxl.info Реклама на сайте