Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий Характеристики свойств

Прочностные свойства тугоплавких материалов вследствие их чувствительности к окислению на воздухе обычно определяют в вакууме (не менее 0,1 МПа, при натекании воздуха в вакуумную систему примерно 0,1...0,3 мкл/с) или инертной среде. В процессе кратковременных испытаний, когда в качестве защитной среды используют аргон, минимальные температурные выдержки (3...10 мин) приводят к небольшому поверхностному насыщению образцов остаточными газами из объема рабочей камеры и не оказывают заметного влияния на прочностные характеристики. Испытания сплавов ниобия и тантала вообще не желательно проводить в среде аргона или динамического вакуума (при натекании воздуха в вакуумную систему более 0,5 мкл/с). В некоторых случаях, при высокотемпературных механических испытаниях псевдосплавов тугоплавких материалов, содержащих легкоплавкую составляющую, необходимо регулировать интенсивность испарения, тогда в рабочей камере испытательной установки создают инертным газом избыточное давление 0,1.. .10 МПа.  [c.278]


Проведенное исследование двухфазных (а+7)-сплавов позволяет сделать два вывода 1) в отличие от е-сплавов [153] ванадий и ниобий не повышают пластических свойств сс-сплавов, несмотря на измельчение зерна 2) вязкий интеркристаллитный излом обладает низкой энергоемкостью и не всегда может служить характеристикой вязких свойств металла.  [c.232]

Другая важная характеристика материалов для работы при высоких температурах — длительная прочность — приведена в табл. IV. 16 в сравнении с механическими свойствами на растяжение при той же температуре. При 1095° С наибольшую длительную прочность за 100 час. имеет вольфрам. Тантал и, по-видимому, ниобий имеют значительно меньшую длительную прочность.  [c.471]

В настоящее время большое внимание уделяется исследованию жаропрочных сплавов на основе ниобия. Наиболее эффективные результаты были получены при легировании его титаном, ванадием, цирконием, вольфрамом, молибденом и гафнием. В сплавы следует вводить не более 5% 2г и 15% V, поскольку при больших концентрациях эти элементы вызывают резкое падение пластических свойств. В присутствии вольфрама, молибдена и гафния пластические свойства ниобия не снижаются, однако в присутствии молибдена при содержании его более 5% резко ухудшается сопротивление ниобия окислению. В присутствии титана сопротивление ниобия окислению и его пластичность повышаются, но снижается жаропрочность. Довольно высокими прочностными характеристиками обладают ниобиевые сплавы, легированные несколькими элементами. Из этих сплавов наиболее высокую прочность имеет сплав ниобия с 15% 5% Мо и 1% гг (Е-48).  [c.474]

Легирование ниобия танталом повышает прочностные характеристики сплавов и улучшает их пластические свойства.  [c.190]

Металлический ниобий имеет высокую пластичность при обычных температурах. Однако эта пластичность ухудшается при наличии в ниобии примесей, таких, как кислород, азот и углерод. Титан значительно улучшает пластические свойства ниобия при их совместном сплавлении и мало изменяет прочностные характеристики ниобия. Ниобий с р-титаном образует непрерывный ряд твердых растворов. Растворимость ниобия в а-титане при 600° С — 4 вес. % с дальнейшим повышением температуры она уменьшается. Как сообщалось ранее [1,2], сплавы ниобий— титан обладают высокой коррозионной стойкостью в кислотах и могут быть использованы в качестве конструкционных материалов для изготовления различного рода химического оборудования, эксплуатируемого главным образом в кислых средах.  [c.191]

В настоящей работе приведены результаты исследования сверхпроводимости отожженного и дегазированного ниобия и сообщается о влиянии атомов, главным образом кислорода и азота, входящих в растворы внедрения. Исследование включает определение критической температуры Гк, характеристик электросопротивления в магнитных полях в критическом интервале для проволочных образцов, магнитных свойств и критического  [c.99]


Характеристики сверхпроводимости ниобия ТИВЛЕНИЕ И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ВНЕДРЕНИЯ  [c.107]

Опубликованные данные о поведении и свойствах ниобия при легировании отрывочны. В литературе 1, 2] приведено очень мало данных о прочности ниобия при температурах 1100—1370° С и они слишком скудны, чтобы можно было понять влияние легирующих добавок-на характеристики ползучести и длительной прочности. Дополнительно опубликованные материалы о низкотемпературной прочности 3—5], пластичности [5], поведении ниобия в условиях растяжения при повышенной температуре [3, 5] позволят лучше понять поведение ниобия при систематическом легировании.  [c.179]

Механические свойства. Присадка ниобия повышает твердость и прочность иридия. Качественная характеристика сплавов по данным [И] приведена Б табл. 236.  [c.571]

Большинство наплавляемых на сталь цветных. металлов отличается от нее температурой плавления, плотностью, коэффициентами теплофизических свойств (коэффициентами линейного расширения), кристаллографическими характеристиками —типом решетки и ее параметрами. Такие тугоплавкие и химически активные металлы, как титан, ниобий, тантал и молибден, при нагреве активно  [c.471]

Если некоторое время тому назад конструкции изготавливались в основном из относительно просто сваривающихся материалов, то в настоящее время, наряду с традиционными, для сварных конструкций применяются материалы с весьма различными физическими и сварочными характеристиками коррозионностойкие и жаропрочные стали и сплавы, никелевые и медные сплавы с особыми свойствами, легкие сплавы на алюминиевой и магниевой основах, титановые сплавы, ниобий, тантал и другие металлы и сплавы.  [c.355]

По своим физико-химическим свойствам многие цветные металлы резко отличаются от стали, что необходимо учитывать при выборе способа и технологии сварки. Наибольшее значение для оценки свариваемости того или иного металла имеют следующие свойства сродство к газам воздуха, температуры плавления и кипения, теплопроводность, плотность, механические характеристики при высоких и низких температурах. По совокупности этих свойств рассматриваемые металлы можно условно разделить на такие группы легкие (алюминий, магний, бериллий) активные и тугоплавкие (титан, цирконий, ванадий, вольфрам, молибден, ниобий) тяжелые цветные и драгоценные (медь, серебро, платина и др.).  [c.635]

По своим физико-химическим свойствам цветные металлы существенно отличаются от сталей, что необходимо учитывать при выборе способа и режимов сварки. Наибольшее значение при этом имеют следующие свойства металлов сродство к газам воздуха, температура плавления и кипения, теплопроводность, коэффициент теплового расщирения, плотность, механические свойства при низких и высоких температурах. По совокупности этих характеристик цветные металлы можно условно разделить на следующие группы легкие (алюминий, магний, бериллий) химически активные и тугоплавкие (титан, цирконий, ниобий, тантал, молибден) тяжелые и драгоценные (медь, золото, платина и др.).  [c.315]

Термическая стабильность упругих характеристик ниобия обусловила сохранение акустических свойств при работе в расплаве. В самом деле, длина волны к через скорость ультразвука с на частоте / прямо связана с модулем нормальной упругости Е соотношением  [c.481]

Плотность ниобия (8,7 г см ) л шъ немногим больше, чем у стали, и значительно меньше, чем у других тугоплавких металлов. Эта характеристика в сочетании с благоприятными ядерными свойствами привела к интенсивной разработке сплавов на основе ниобия для авиационных ядерных реакторов. С высокопрочными ниобиевыми сплавами связано много таких же производственных проблем, как и с молибденом. Поскольку в ниобиевых сплавах легирующих элементов обычно больше, чем в молибденовых, получить однородные слитки дуговой плавкой трудно.  [c.163]

Предупреждение взаимодействия напыляемого материала с кислородом и другими атмосферными газами дает, вероятно, единственную возможность нанесения качественных покрытий напылением из титана, вольфрама, молибдена, тантала, ниобия и циркония Металлы имеют высокую температуру плавления, удовлетворительную прочность при высокой температуре, некоторые из них — высокую пластичность и коррозионную стойкость. Эти характеристики можно также улучшить легированием. Несмотря на высокую стоимость этих металлов, для исследования при напылении в контролируемой атмосфере они были выбраны в связи с тем, что при напылении их в обычных условиях не удавалось получить покрытия с удовлетворительными свойствами Получение таких металлических покрытий с хорошей плотностью, надежным сцеплением и высокой однородностью может открыть новые области применения их в химической промышленности, ядерной, авиационной и космической технике.  [c.171]


Сплавы. Характеристики свойств важнейших отечественных ниобие-вых сплавов приведены в табл. 143.  [c.551]

Характеристики свойств 2.,447, -448, 451 — 454 Никелирование 3.134 Никотрирование — см. Азотирование с добавками углеродосодержащих газов Ниобий — Взаимодействие с различными средами 2.549, 551 — Получение и обработка 2.548, 549  [c.637]

Электроды для сварки теплоустойчивых сталей. 2 стали сваривают электродами восьми типов по ГОСТ 9467—60, которые классифицируют по механическим свойствам и химическому составу наплавленного металла. Буквы, стоящие после буквы Э, показывают гарантийное содержание легирующих элементов в наплавленном металле. Содержание легирующих элементов, если оно превышает 1%, ставят после соответствующей буквы в целых единицах (процентах) если содержание легирующего элемента менее 1%, то ставится только соответствующая буква. Например, электроды типа Э-Х2МФБ гарантируют в наплавленном металле шва более 2% хрома, до 1% молибдена, ванадия и ниобия. Характеристика электродов для сварки теплоустойчивых сталей приведена в табл. 38 и 39.  [c.98]

Установлено, что повышение температуры аустенизации стали 11Х12Н2МВФБА перед закалкой с 1020 до 1130 С существенно влияет на величину предела выносливости образцов. Более низкая температура закалки (1020°С) обусловливает более резкое снижение предела выносливости с повышением температуры отпуска (с 660,до 545 МПа), чем сталь, закаленная с 1130°С (с 620 до 580 МПа). Сталь, закаленная с 1020 или 1130°С и отпущенная при 600°С, состоит из мартенсита и мелкодисперсных легированных карбидов, причем в стали, закаленной с 1130°С карбидов меньше, чем в стали, закаленной с 1020°С, так как при низшей температуре аустенизации не происходит полное растворение карбидов ниобия а аустенита. Сталь, закаленная от 1020°С, меняет характеристики прочности и пластичности более заметно с изменением температуры отпуска, чем после закалки от 1130°С, т.е. повышение температуры аустенизации обусловли вает большую стабильность свойств стали при повышенных температурах. Высокий предел выносливости стали 11Х12Н2МВФБА после закалки и отпуска при 600 °С достигается в основном за счет выделения упрочняющей метастабильной фазы (Сг, W, Мо, V )j( N) и карбонитридов ниобия Nb( N). Повышение температуры отпуска до 660 и УОО С обусловило-снижение предела выносливости в воздухе соответственно до 580 и 500 МПа вследствие выделения и коагуляции сложного карбида /№,, С .  [c.59]

В работе [72] определялись прочностные характеристики при 20° С образцов ниобия и ванадия, облученных при 600—1300 С до интегральной дозы 3,7 10 н/см . Обнаружено незначительное возрастание пределов текучести и прочности по сравнению с необлу-ченным состоянием вплоть до 1000° С и резкое увеличение этих характеристик после облучения при 1100° С. В этой же области температур наблюдался максимум прироста электросопротивления от температуры облучения ниобия. Данные электронно-микроскопических исследований, электросопротивления и механических свойств облученных образцов в области порядка 0,5 T j, свидетельствуют о качественном изменении характера дефектообразования по сравнению  [c.78]

Сплавы на основе ниобия. Чистый инобий, обладая высокой пластичностью и технологичностью, имеет ограниченную жаропрочность. Сточасовой предел длительной прочности при температурах 1100 и 1200 °6 составляет соответственно 50 и 30 МПа [67]. Легирование существенным образом повышает жаропрочные свойства, ио при этом снижаются характеристики пластичности и технологичности.  [c.443]

Порошковой металлургией стало возможно получать МКМ с матрицей из особотугоплавких сплавов - ниобия, вольфрама, молибдена и сплавов на их основе. Волокнистыми наполнителями (нитевидными кристаллами из тугоплавких соединений) эти матрицы армируют с целью придания им особых эксплуатационных свойств (ударопрочности, термостойкости и других специальных физических характеристик).  [c.465]

Стали, стабилизированные титаном или ниобием, зака ливают из двухфазной области аустенита и специальных карбидов Ti (или Nb ), причем температура закалки не зависит от содержания углерода и составляет обычно 1000—1100°С, чаще всего 1050 °С (см рис 170,6) Более высокие температуры нецелесообразны из за возможного роста зерна и начала растворения специальных карбидов После закалки стали приобретают оптимальное сочета нне характеристик механических свойств и коррозионной стойкости  [c.283]

Дальнейшее повышение экономической эффективности использования топлива, в частности в реакторах ВВЭР, с обеспечением среднего выгорания до 55...60 МВт-сут/кг урана и 5-6-летних кампаний при достижении флюенса нейтронов (Ф) до (2...5) 10 н/см и с внедрением режима маневрирования мощностью в реакторах напрямую связаны с необходимостью увеличения ресурсных характеристик циркониевых изделий для использования их в составе ТВС (оболочки твэлов, дис-танционирующие решетки, направляющие и центральные каналы). Дяя новых условий эксплуатации бинарные сплавы с ниобием не имеют необходимого запаса свойств, особенно по сопротивлению деформированию в результате радиационных ползучести и роста, а также упругим характеристикам для обеспечения размерной стабильности и целостности твэлов и ТВС (распухание, удлинение, искривление).  [c.364]

В отличие от чистого (иодидного) циркония, обладают сравнительно низкими прочностными свойствами (а = 200 МГ механические характеристики циркониевых сплавов с ниоб находятся на уровне свойств конструкционных сталей. Ор значительной мере зависят от режима термической обработ других факторов. Табл. А2.9 иллюстрирует зависимость меха ческих характеристик сплава Zr + 2,5 мае. % Nb от режима i мообработки, температуры и дозы обл) чения [10].  [c.60]


Среди наиболее тугоплавких металлов особенно перспективен для разработки жаропрочных сплавов ниобий, отличающийся высокой пластичностью, относительно малой окисляемостью и другими полезными характеристиками. На основе новых теоретических и экспериментальных данных выявлена возможность эффективного упрочнения ниобия и его сплавов дисперсными частицами карбидов, нитридов и окислов циркония и гафния. Закономерности образования и распада пересыщенных твердых растворов в двухфазных нио-биевых сплавах являются типичными для классических стареющих сплавов. В связи с этим большое значение имеет возможность регулирования структуры и свойств этих сплавов путем термической обработки. Сочетание оптимального количества упрочняющей дисперсной фазы и рационального режима термической обработки позволяет значительно повысить жаропрочные свойства современных ниобиевых сплавов.  [c.5]

Тщательное изучение электронных характеристик переходных металлов и их сплавов в связи с разработкой сверхпроводящих материалов выявило, что свойства металлов IV и VI групп не изменяются монотонно, как модуль С, а имеют низкие значения для титана, циркония, гафния, далее проходят через максимум вблизи металлов V группы — ванадия, ниобия и тантала — (4,7—4,8 эл/атом), тогда как электронным концентрациям, лежащим вблизи металлов VI группы — хрома, молибдена, вольфрама и равным 5,7—6,0 эл/атом, вновь отвечает минимум. При переходе к металлам VII—VIII групп наблюдается второй максимум вблизи технеция и рения (6,7—7 эл/атом), а затем новый минимум, приходящийся на рутений и осмий (8 эл/атом).  [c.54]

При более высоких температурах образуются аморфно-кристаллические пленки с низкими электрическими характеристиками. Сплошность термических пленок на металлах сохраняется лишь до определенной толш,ины, при превышении которой возникающие в пленке напряжения вызывают ее растрескивание. Чиело веществ, на которых образуются сплошные (когерентные, однородные) пленки, весьма ограничено. Прежде всего следует назвать тантал, ниобий, алюминий и кремний. Наиболее широкое применение получили термические пленки на кремнии. Они образуются в атмосфере сухого кислорода при Г= 1300 н-1600 К при окислении во влажном кислороде или парах воды температура может быть понижена до 800 К. Во всех случаях получаются аморфные пленки, имеющие структуру ближнего порядка, сходную со структурой кварцевого стекла. Химическая или топографическая неоднородность кремниевой подложки может вызвать появление в аморфном оксиде кристаллической фазы, имеющей структуру а-кристобали-та, присутствие которой ухудшает электрические свойства пленки и может вызвать нарушение ее сплошности.  [c.257]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]

Сталь хорошо сваривается покрытыми электродами из ниобий--содержащей стали 18-8 или 19-9 (ЦТ-15) обладает удовлетворительной сопротивляемостью межкристаллитной коррозии не требует обязательной термической обработки после сварки. В аустенитизированном состоянии характеризуется высокой пластичностью допускает глубокую вытяжку и другие виды холодной штамповки. Легко упрочняется путем холодного наклепа (нагартовки) в нагартованном состоянип обладает высокими прочностными характеристиками (ст удовлетворительных значениях пластических свойств.  [c.538]

Ниобий является тугоплавким и жаропрочным металлом. По химическим свойствам ниобий близок к танталу. Оба металла чрезвычайно устойчивы на холоду к действию многих агрессивных сред, хотя в этом отношении ниобий уступает танталу. Ниобий характеризуется хорошей коррозионной стойкостью против действия многих кислот и растворов солей. На ниобий не действует царская водка, соляная и серная кислоты при 20°, азотная, фосфорная, хлорная кислоты, водяные растворы аммиака и многие другие неорганические и органические вещества. Плавиковая кислота, ее смесь с азотной кислотой, а также щелочи растворяют ниобий. В кислых электролитах на ниобие образуется окисная пленка, имеющая высокие диэлектрические характеристики, что позволяет использовать ниобий, как и тантал, в радиоэлектронике для изготовления электролитических конденсаторов.  [c.84]

Именно по этой причине в последнее время наряду с широким использованием специальных сталей повышенной коррозионной стойкости и сплавов на основе никеля и титана расширяется практическое применение сплавов на основе более редких металлов — циркония, молибдена, ниобия, тантала, вольфрама и др. В настоящее время при оценке конструкционных свойств металлических сплавов характеристика физико-шмической (коррозионной) их стойкости является одной из важнейших наряду с прочностными показателями.  [c.7]

Результатом усовершенствования хромансиля по прочности является сталь ЗОХГСНА — никелевый хромансиль. Еще более высокие прочностные характеристики дает более сложное легирование примером может служить сталь ЭИ643. Механические свойства трех упомянутых выше сталей представлены на рис. 7.4. При температурах выше 500°С и до 800°С хорошо работают нержавеющие жаропрочные стали. Это хромоникелевые стали с содержанием хрома и никеля (от 4 до 15% каждого элемента), а также с добавками вольфрама, молибдена, титана, ниобия. Современные жаропрочные стали обладают хорошей пластичностью в холодном и горячем состоянии, отлично дефор-  [c.215]


Хотя в технике в наше время в гораздо больших масштабах используются сплавы металлов, однако и непосредственное применение чистых металлов неуклонно продолжает возрастать. В последние два-три десятилетия особенно увеличился ассортимент Н01вых технически важных металлов. Не так давно на такие металлы, как кобальт, молибден, ниобий, вольфрам, титан, цирконий, тантал, индий, германий и ряд других, можно было смотреть как на сравнительно редкие, не имеющие широкого практического применения. Сейчас все эти металлы имеют уже большое значение в технике и интерес к их свойстам, в том числе и Koippo-зионным, все время возрастает. Для правильного понимания коррозионных свойств металлических сплавов необходимо знать коррозионные свойства чистых компонентов. Поэтому далее мы дадим общую коррозионную характеристику наиболее важных для техники чистых металлов. Коррозионные свойства сплавов будут рассмотрены позже.  [c.430]


Смотреть страницы где упоминается термин Ниобий Характеристики свойств : [c.67]    [c.149]    [c.313]    [c.85]    [c.9]    [c.9]    [c.25]    [c.102]    [c.45]    [c.240]    [c.127]    [c.206]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.548 ]



ПОИСК



434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Ниобий

Ниобий — Свойства

Ниобит 558, XIV



© 2025 Mash-xxl.info Реклама на сайте