Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Юпитер спутники

Пренебрегая высотой полета искусственного спутника над поверхностью небесного тела, определить первую космическую скорость VI и соответствующий период Т обращения для Земли, Луны, Венеры, Марса и Юпитера.  [c.389]

Расстояния планет до Солнца пропорциональны ряду чисел золотой пропорции 5+1)/2 0,38 0,62, 1,00 1,62... Средние отклонения значений радиусов орбит от фактических составило 6-7% [59]. Аналогичные закономерности были установлены при изучении расположения спутников Марса, Юпитера, Урана и Нептуна.  [c.77]


Если в это время происходит п-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на R- -r)l секунд. Поэтому, если период обращения спутника вокруг Юпитера t, то промежуток времени Тх, протекший между первым и п-и затмениями ли, равен  [c.419]

По истечении еще 0,545 года Земля З3 и Юпитер Юз будут вновь находиться в противостоянии. За это время совершились (п—1) оборотов спутника вокруг Юпитера и (л—1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения Зз и Юг, а последнее — когда они занимали положения З3 и Ю3, Первое затмение наблюдалось на Земле с запозданием к- -г)/д, а последнее с запозданием R—г)/с по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем  [c.419]

Открытие спутников Юпитера, фаз Венеры, солнечных пятен и др. потребовало лишь наличия телескопа и известного трудолюбия, но нужен был необыкновенный гений, чтобы открыть законы природы в таких явлениях, которые всегда пребывали перед глазами, но объяснение которых тем не менее всегда ускользало от изыскания философов .  [c.13]

Период обращения одного из спутников Юпитера, называемого Ио, равен 1,77 суток, причем радиус его орбиты составляет 5,91 радиуса Юпитера, Среднее расстояние Юпитер —  [c.392]

Подобное сравнение между периодами спутников Юпитера и Сатурна и их расстояниями от этих планет дано также Ньютоном.  [c.208]

Теперь общеизвестно, что различные планеты имеют по одному и более спутников (Земля, Нептун, Марс, Юпитер, Сатурн, Уран) Ньютон впервые (для известных тогда спутников) прямыми наблюдениями установил, что также и для движения всякого спутника вокруг соответствующей планеты приблизительно выполняются законы Кеплера. Допустим, что в первом приближении движение спутника вокруг своей планеты можно рассматривать как абсолютное (в обычном смысле, приписываемом этому слову в механике).  [c.190]

В табл, 1 указана ещё одна важная характеристика планет, содержащая определённую информацию об их внутр, строении и эволюции и во многом определяющая свойства атмосферы и околопланетного пространства. Это — значение напряжённости магн. поля на экваторе. Наиб, сильными магн. полями обладают Юпитер, Земля, Сатурн, Уран, Нептун. Заметим, что хотя у Нептуна, Сатурна и Урана оно слабее земного (при отнесении к соответствующим радиусам поверхности), в недрах этих планет мощность генератора их магн. поля должна быть примерно на два порядка выше. Существенное магн, поле обнаружено у Меркурия и, по-видимому, у Марса, практически отсутствует собств. поле у Венеры. Что касается Плутона, то, по аналогии с ледяными спутниками планет-гигантов, наличие у него магн. поля маловероятно.  [c.623]

У всех планет, кроме Венеры и Меркурия, есть спутники. Осн. характеристики спутников приведены в табл. 3. Общее число известных спутников составляет 61, включая сравнительно недавно открытые 3 спутника Юпитера, 7 спутников Сатурна, 10 спутников Урана, 6 спутников Нептуна и спутник Плутона. Наиболее крупными спутниками обладают Земля,  [c.623]


Впервые экспериментально скорость света была определена астрономическим методом. Датский ученый Олаф Ремер (1644—1710) в 1676 г. обнаружил, что при изменении расстояния между Землей и планетой Юпитсф вследствие их обращения вокруг Солнца происходит изменение периодичности появления спутника Юпитера Ио из его тени (рис, 258). В том случае, когда Земля находится по другую сторону от Солнца по отношению к Юпитеру, спутник Ио появляется из-за Юпитера на 22 мин позже, чем это должно произойти по расчетам. Но спутники обращаются вокруг планет равномерно,— следовательно, это запаздывание кажущееся. Ремер догадался, что причиной кажущегося запазды-  [c.262]

Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис. 20.1. Пусть в определенный момент времени Земля 3i и Юпитер Юх находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через Rur радиусы орбит Юпитера и Земли и через с — скорость света в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R—г)/с секунд позже, чем он совершается во временной системе отсчета, связанной с Юпитером.  [c.419]

Таким образом между внутренними и внешними силами нет разницы по существу. Тем не менее, весьма важно отделять внутренние силы от внешних, и вот почему внутренние силы, как представляющие взаимные действия частей системы одной на другую, всегда имеются в системе по две вместе, равные и противоположные. Этот результат указывается нам третьим законом Ньютона — законом равенства между действием и противодействием. Поэтому, если А и В — две части системы, то мы получим в ней во-первых, действтш А иа В, а во-вторых, обратное действие В на А. В системе, состоящей из Юпитера со спутниками, мы встретим как притяжение Юпитером одного из спутников, так и обратное притяжение Юпитера спутником. В паровозе, когда рассматриваем его в целом, имеем давление ползуна на параллели и обратное давление параллелей на ползун и т. д.  [c.156]

Спутник V, открытый Барнардом (1857—1923) 9 сентября 1892 г. с помощью большого рефрактора Ликской обсерватории, также обладает почти в точности круговой орбитой, весьма близкой к плоскости экватора планеты. Этот, самый близкий к Юпитеру спутник, очень слаб (13 "). Его расстояние от центра планеты всего 2.5 радиуса Юпитера, а период обращения 12 часов, что лишь немного больше периода обращения Юпитера вокруг оси (10 часов).  [c.162]

Закош.1 движения центров масс искусственных и естественных спучников Земли не отличаются от законов движения спутников других планет, например Юпитера, и движения планет вокруг Солнца или какой-либо другой звезды. Полное решение задачи Ньютона дает все данные о движении центров  [c.551]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]

Время прохождения светом диаметра орбиты Земли. Предположение, что скорость света должна иметь конечное значение, было сделано за много столетий до того, как люди смогли доказать это экспериментально. Первое экспериментальное подтверждение конечности скорости света было дано Рёмером в 1676 г. Он обнаружил, что движение Ио, крупнейшего спутника Юпитера, совершается не совсем регулярно по времени  [c.312]


Земли, а не Юпитера. Метод Рёмера был не очень точен, но именно его расчет показал астрономам, что для определения истинного движения планет и -их спутников, производимого на основании измерений наблюдаемого движения планет, необходимо учитывать время распространения светового сигнала.  [c.313]

А.Затмения Ио. Один из спутников Юпитера, Ио, обращается вокруг него по орбите радиусом 4,21 10 см со средним периодом обращения 42,5 ч. Рёмер обнаружил, что этот период регулярно изменяется в течение года, причем периодичность этих изменений — около одного года. Максимальное отклонение периода обращения от среднего значения было равно 15 с и повторялось примерно через 6 месяцев. Движение Юпитера по орбите не учитывать.  [c.339]

Первые измерения скорости света были основаны на астрономических наблюдениях. Достоверное значение скорости света, близкое к современной величине, было впервые получено Рёмером (1676) при наблюдении затмений спутников планеты Юпитер.  [c.196]

Изложенные соображения лежат в основе принципа определения скорости света по методу Рёмера, который в качестве периодического процесса использовал затмения одного из спутников Юпитера. Рёмер проводил наблюдения за спутником Ио, имеющем период обращения 42 ч 27 мин 33 с. При движении Земли по участку орбиты (рис. 30.1) она удаляется от Юпитера и  [c.197]

Экспериментальное доказательство конечности скорости света впервые вьшолнил датский астроном О. Ремер (167б). Проанализировав результаты многолетних наблюдений затмения спутника Юпитера Ио, он заметил, что когда Земля 3 находится на отдаленной от Юпитера Ю точке своей орбиты (рис. 25), Ио появляется из тени Юпитера на 22 мин позже. За это время свет проходит расстояние, равное земной орбите. Поскольку диаметр в то время был известен лишь приблизительно, Ремер не привел конкретного значения скорости света. Более поздние оценки дали с 215 ООО км/с.  [c.120]

У Юпитера известны девять спутников, четыре из которых, так называемые медицейские планеты, открыты Галилеем в 1610 г. Один из них, называемый Ио, совершает свое обращение вокруг Юпитера приблизительно в 1,77 суток, полуось же его орбиты приблизительно равна 5,91 радиуса Юпитера (радиус Юпитера равен 11,14 радиуса Земли). Полуось орбиты Юпитера равна 5,20 среднего расстояния Солнце—Земля, т. е. 5,20-23 000 земных радиусов он обращается вокруг Солнца в течение 11 лет 314,84 суток.  [c.214]

Сплавы алюминия и магния в значительной степени способствовали успеху битвы 1за килограммы. Ведь маг,ний легче алюминия, его удельный вес всего 1,74 г/см . Самому магнию было трудно состязаться с алюминием из-за невысокой коррозионной стойкости, возможного брака при литье и относительно небольшого температурного потолка эксплуатации. Однако сплавы магния, легированные торием, иттрием, неодимом и другими присадками, из-за высокой теплоемкости оказались прекрасными конструкционными материалами, особенно для кратковременной эксплуатации в температурном интервале 350— 450°. Они нашли применение в ракетостроении. Их использовали для обшивки корпуса, топливных и кислородных баков, баллонов пневмосистем, стабилизаторов и других частей американских ракет Юпитер , Атлас , Титан , Поларвс и спутников Авангард и Дискаверер .  [c.113]

Н. АНуёп) для комет и впервые продемонстрирован в лаб. модельном эксперименте. Аналогичным образом взаимодействуют потоки плазмы внутри М. Юпитера и Сатурна с их спутниками Ио, Титаном и др.  [c.16]

М. Юпитера и Сатурна. Существование собств, магн. поля этих планет было установлено по синхротронному радиоизлучению частиц, захваченных в радиац. поясах. М. Юпитера исследована при пролётах АМС Пионер-10, -И и Вояджер -1, -2 (1979), Сатурна — Вояджер-1 (1980), Вояджер-2 (1981). Юпитер и Сатурн обладают собств. М. с присущими им признаками. Характерной особенностью М. планет-гигантов является доминирующая роль центробежных сил. Размеры нлазмосфер Юпитера и Сатурна таковы, что центробежные силы, воздействуя на нлазмосферу, вытягивают линии магн. поля вблизи экватора и М. приобретает дискообразную форму, а токовый слой в плоскости экватора располагается не только на ночной, но и на дневной стороне. Наличие спутников внутри радиац. поясов приводит к уменьшению концентрации быстрых частиц в окрестностях орбит этих спутников из-за рекомбинации. Обнаружение полостей внутри радиац. поясов позволило открыть и определить орбиты ранее не известных спутников Юпитера и Сатурна. Удивительной особенностью Сатурна является совпадение его магн. оса с осью вращения (ранее генерация такого магн. поля считалась невозможной).  [c.16]

Низкая ср. плотность Н. свидетельствует о том, что водорода и гелия много и в составе слагающего Н. вещества. Однако содержание водорода на Н. (как и на Уране) в несвязанном состоянии значительно меньше, чем на Юпитере и Сатурне. Водород на Н. в основном входит в состав т. н. ледяной компоненты, к к-рой относят соединения водорода в виде метана, аммиака, воды. Большое содержание метана свидетельствует о существенном (в неск. раз) превышении отношения углерода к водороду по сравнению с их ср. космич. распространённостью. Это можно естественным образом объяснить накоплением углерода в холодных периферийных областях протоплаиетной туманности, из материала к-рой сформировался Н. Согласно моделям внутр. строения планет-гигантов (см. в ст. Планеты и спутники), на Н. протяжённый слой твёрдого вещества состоит из смеси льдов с тяжёлой (скальной) компонентой, причём скальной компоненты несколько больше, чем ледяной. По существу это массивное ядро, к-рое окружено мантией, состоящей из смеси газов (в основном водорода и гелия) и льдов, а выше неё находится протяжённый слой водяных облаков. Здесь начинается атмосфера. Т. о., твёрдой поверхности в привычном смысле Н. не имеет (как и др. планеты-гиганты). Согласно представляющейся наиб, реальной адиабатич. модели недр Н. (при допущении, что исходный состав элементов соответствует их ср. космич. распространённости, а относит, содержание водорода и гелия в несвязанной форме составляет прибл. 5—8% по массе), темп-ра в центре Н. (12—14)-10 К, а давление 7—8 Мбар. Граница протяжённой ледяной оболочки (ниже газожидкого слоя) начинается при давлении ок. 0,1 Мбар.  [c.327]

ПЛАНЁТЫ И СПУТНИКИ. 9 больших планет Солнечной системы подразделяются на планеты земной группы Меркурий, Венера, Земля, Марс) и планеты-гиганты, или планеты группы Юпитера (Юпитер, Сатурн, Уран, Нептун), иллшета Плутон по своим размерам и свойствам значительно ближе к спутникам планет-гигантов.  [c.620]


Юнитер, Сатурн к Нептун. Это Луна, четыре галилеевых спутника Юпитера (Ио, Европа, Ганимед, Каллисто), спутник Сатурна Титан и спутник Нептуна Тритон, которые но своим размерам сопоставимы с планетами земной группы. Остальные спутники имеют размеры от неск, десятков до ми, сотен километров и, в отличие от планет и более крупных спутников,— часто неправильную (несферпческую) форму. Это сближает их с астероидами.  [c.623]

Планеты-гиганты принято считать газожидкими телами с конвективными оболочками, в к-рых распределеиие темп-ры близко к адиабатическому. Это заключение основано на след, данных наблюдений. По данным ИК-наблюдений, поток тепла из недр планет 01 азался равным 10 эрг/см -с (для Юпитера) и 3-10 эрг/см -е (для Сатурна), Поскольку такой поток более чем на 4 порядка превышает поток тепла за счёт молекулярной теплопроводности, то это указывает на конвективное состояние внеш. зовы или всей планеты. Юпитер, Сатурн, Уран и, возможно, Нептун обладают собств. магн. полем, к-рое, вероятно, генерируется в конвективном ядре. Эволюция орбит спутников Юпитера, Сатурна и Урана, измерения гравитац. поля Юпитера также указывают на жидкое, близкое к гидростатически равновесному, состояние планет.  [c.624]

I В первой зоне структура истекающей из оболочки спутника струи плазмы зависит также от направления магн. поля. Скорость аккреции (кол-во перетекающего вещества за единицу времени) максимальна, если магн. ось белого карлика направлена вдоль линии центров, и практически равна нулю, если эти оси перпендикулярны друг другу. Т. о., изменения светимости в неск. десятков раз с характерным временем месяцы и годы могут быть объяснены изменениями ориентации магн. осн белого карлика. Кроме того, на скорость аккреции влияют активность звезды-спутника (подобная солнечной), дополнит, щзогрев оболочки спутника рентг. и УФ-излучением белого карлика, а также малые флуктуации расстояния между звёздами под действием возможного третьего тела типа Юпитера.  [c.82]


Смотреть страницы где упоминается термин Юпитер спутники : [c.423]    [c.162]    [c.413]    [c.23]    [c.263]    [c.312]    [c.418]    [c.242]    [c.1206]    [c.456]    [c.584]    [c.220]    [c.287]    [c.177]    [c.458]    [c.138]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.214 ]



ПОИСК



Искусственные спутники других планет группы Юпитера

Искусственный спутник Юпитера

Спутник

Юпитер



© 2025 Mash-xxl.info Реклама на сайте