Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядерная плотность

Плотность ядерного вещества чрезвычайно велика, подобных плотностей для макроскопических тел в природе не встречается (макроскопические плотности примерно в 10 раз меньше ядерной плотности). Наиболее плотными макроскопическими образованиями считаются звезды белые карлики. Полагают, что их вещество находится в несколько необычном (вырожденном) состоянии. Однако их плотности  [c.91]

Звезды, состоящие почти целиком из нейтронов, называются нейтронными. Их существование было теоретически предсказано Дж. Оппенгеймером и Г. Волковым в 1939 г. Нейтронные звезды характеризуются приблизительно ядерной плотностью вещества (2-10 г/см ) и удерживаются в равновесии давлением нейтронного газа. Теоретические оценки показывают, что нейтронный газ может  [c.612]


Представления Н. а. м. оказались полезными и для описания процесса фрагментации нуклонов в ядерных реакциях под воздействием тяжёлых ионов высоких энергий. В этих ядерных реакциях образуется составная ядерная система в виде нагретого и сжатого сгустка ядерного вещества (ф а й р б о л), к-рый, остывая, расширяется до плотности, примерно вдвое меньшей нормальной ядерной плотности. Ожидается, что при такой плотности увеличивается вероятность образования  [c.367]

Наиб, детально разработана теория симметричной Я. м. Её осн. задача — расчёт равновесной ядерной плотности  [c.655]

Для того чтобы теоретически определить возможные стационарные энергетические состояния системы частиц (атома, молекулы или их ионов), а затем по ним рассчитать спектры или термодинамические функции, необходимо составить оператор Гамильтона Я и решить уравнение Шредингера (3.5). При этом должны одновременно получаться не только собственные значения полной энергии системы Е = Е, Е2, Ез. .. Ek, но и соответствующие им собственные волновые функции il) = l3i, vp2, определяющие возможные стационарные варианты распределения частиц (электронов и ядер) в пространстве, т. е. электронную и ядерную плотность в атомах и молекулах. Однако точно в аналитическом виде уравнение Шредингера (3.5) решается только для одноэлектронной системы атома водорода и некоторых простейших модельных систем, например, гармонического осциллятора, жесткого ротатора и немногих других. Поэтому обычно квантовомеханические уравнения для реальных систем реша-  [c.18]

При объяснении интенсивностей переходов, подчиняющихся принципу Франка — Кондона, необходимо рассмотреть распределение ядерной плотности для различных колебательных состояний, которая пропорциональна Под распределением ядерной плотности подразумевается вероятность застать два ядра на каком-то определенном расстоянии. На рис. 1.31 показано распределение ядерной плотности для различных колебательных уровней основного и возбужденного электронного состояний.  [c.73]

На рис. 1.31 видно, что с увеличением V ядерная плотность сосредоточивается на расстояниях, соответствующих максимумам амплитуд колебаний (точкам возврата) классического гармонического осциллятора (кроме состояния с у = 0). Для состояний с  [c.73]

Если корреляции рассматривать не с помощью занятости положения, а с помощью специальных непрерывных функций, которые могут подразумевать занятость положений таких, как функция электронной плотности р(г) (или функция ядерной плотности или потенциал), то припомним, что корреляции можно описывать функцией Паттерсона  [c.372]


Лд (1,25н=0,07)Л /7 = (1,06 0,04)/1 7. Макс значение ядерной плотности примерно одинаково для всех ядер с Л 12 и составляет (0,17 0,01) нуклона// , т. о. р = 2,7 10 г/см . Постоянство ядерной плотности, как и приблизит, постоянство средней энергии связи, приходящейся на один нуклон в ядре (Едг —  [c.324]

Для нормальных ядерных плотностей а имеет порядок нескольких ангстрем и, следовательно, Н% составляет несколько тысяч эрстед. Тогда отношение НЦН) будет значительно меньше единицы и (И т) для 10" > тг > 10 сек будет порядка нескольких единиц. Таким образом, во многих случаях длина Ь имеет порядок среднего ядерного расстояния а  [c.356]

Для нормальных ядерных плотностей а имеет порядок нескольких ангстрем и, следовательно, Щ составляет несколько тысяч эрстед. Тогда  [c.356]

В большинстве технических устройств (паровых котлах, ядерных реакторах, электронагревателях) стараются не приближаться к критической плотности теплового потока кр При р = = 0,1 МПа для воды <7кр = (1,1- -  [c.87]

Магнитогазодинамические уравнения. Чрезвычайно высокий коэффициент теплоотдачи смеси газ — твердые частицы вследствие интенсивного переноса излучения при высоких температурах делает возможным использование такой системы для магнитогидродинамического преобразования энергии, например с ядерным нагревом (разд. 5.6). Относительно низкую электропроводность, например, гелиево — циркониевой смеси можно возместить добавлением цезия, так что электропроводность будет соответствовать уровню кривой С на фиг. 10.12. Это важно, так как плотность мощности Р при магнитогидродинамическом преобразовании энергии определяется в виде [155]  [c.469]

При этом неточность представления (рг) формулой (11.20) в интервале г 0,5—30 см не превышает 8%. Решая задачу по определению энерговыделения в защите ядерного реактора, следует иметь в виду, что в первых слоях защиты наибольший вклад в энерговыделение дают у-кванты, излучаемые из реактора. В последующих слоях возрастает роль вторичных у-квантов, возникающих непосредственно в самой защите в результате поглощения нейтронов. В работе [4] приведены результаты расчета плотности захвата нейтронов (сопровождающегося испусканием у-квантов) в стальных пластинах различной толщины, расположенных в воде на расстоянии 60 см от поверхности активной зоны реактора. Результаты этих расчетов представлены на рис. 11.6. Из рисунка видно, что величина плотности  [c.119]

Вначале рассмотрим исходное уравнение в общем виде, одинаково применимое как для мгновенных продуктов деления, так и для продуктов деления ядерного реактора. Заметим, что в реакторе, несмотря на выгорание первичного ядерного горючего, обычно поддерживается постоянная мощность, т. е, постоянное (во времени) число актов деления ядер. Чтобы достигнуть такого постоянства мощности (в условиях выгорания делящегося вещества), требуется соответствующее нарастание плотности потока нейтронов в активной зоне. В первом приближении зависимость между удельной мощностью реактора щ [<зг/г] и плотностью потока нейтронов Ф, обусловливающих деление, можно представить в виде  [c.175]

В действительности соотнощение между мощностью реактора и плотностью потока нейтронов более сложное оно включает в себя энергетическую зависимость, конкретную структуру активной зоны, степень выгорания одного и накопления другого ядерного горючего и т. д.  [c.175]

Теорема о вириале служит ключом к пониманию строения любого вещества, в котором силы сцепления обусловлены главным образом притяжением частиц по закону обратных квадратов. Среднее расстояние между атомами рли атомными ядрами в типичной звезде, по-видимому, всегда больше 10- см, так как плотность такой звезды не превышает 10- г/см . Такие расстояния слишком велики для сильных ядерных взаимодействий, эффективных в пределах около 10 з см поэтому только силы гравитационного притяжения соединяют звезду в единое целое.  [c.302]


Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей массы Солнца, в которых имеет место основная последовательность ядерных превращений. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 ядра водорода ядро гелия выделенная энергия = 10 кВт-ч на фунт (2,2 X X 10 кВт-ч/кг) превращенного вещества. Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей <a href="/info/427952">массы Солнца</a>, в которых имеет место основная последовательность <a href="/info/418362">ядерных превращений</a>. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 <a href="/info/710590">ядра</a> водорода ядро гелия выделенная энергия = 10 кВт-ч на <a href="/info/321165">фунт</a> (2,2 X X 10 кВт-ч/кг) превращенного вещества.
Ядерная плотность окисного топлива по сравненикг с платностью карбидного и нитридного существенно ниже, а количество легких ядер кислорода, приходящихся на одно тяжелое ядро, равно двум, что является крайне неблагоприятным фактором для топлива реактора-размножителя. Таким образом, окислы урана или сплава уран-плутонии не отвечают всем тре-  [c.9]

Фигурирующие в КХД асимптотически свободная (на малых расстояниях) и удерживающая (на больших расстояниях) фазы кварк-глюонной материи должны проявляться не только тогда, когда исследуется отклик системы на малых и больших масштабах, но и как её возможные макроскопич. состояния предполагается, что при достаточно большой плотности барионов или при достаточно высокой темп-ре происходит образование кварк-глюонной плазмы, в к-рой кварки и глюоны взаимодействуют сравнительно слабо (так что вычисления можно проводить по теории возмущений). Ожидается, что необходимая для этого плотность энергии всего в неск. раз превышает ядерную плотность, что примерно соответствует плотности энергии внутри типичного адрона. Помимо ранней Вселенной в первые 10- —10- с её эволюции (см. Космология) и, возможно, внутр. части нейтронных звёзд новое состояние материи могло бы образоваться при соударении тяжёлых ультрареля-тивистских ионов. Ведутся соответствующие эксперименты с целью получения и идентификации кварк-глюонной плазмы в лаб. условиях.  [c.501]

Аналогичным образом вводят С. ф. в теории дифракции электронов и нейтронов, однако в этих случаях вместо p(.v, у, г) соответственно рассматривают распределение элек-тростатич. потенциала и ядерной плотности в элементарной кристаллич. ячейке.  [c.9]

Центр. часть оболочечного потенциала представляет собою потенц. яму конечной глубины, форма к-рой повторяет распределение ядерной плотности. Чаще всего в качестве оболочечного потенциала используют т. н. потенциал Саксона — Вудса  [c.688]

Собственную область узла прямой решетки математики называют областью Вороного, а кристаллографы — паралле-лоэдром Федорова. В металлах с ОЦК и ГЦК структурами атомы занимают положения узлов соответствующих решеток Бравэ. Собственные области атомов в этих структурах, называемые в квантовой теории металлов ячейками Витера—Зейтца, совпадают с областями Вороного, но в отличие от последних заполнены реальным веществом — электронной и ядерной плотностью.  [c.43]

Рис. 1.3. Схематическое изображение распределения ядерной плотности (вероятности нахождения ядер друг относительно друга) в зависимости от потенциальной энергии молекулы ЫЫС. По мере повышения энергии (от рис. а к в) размазанность ядра резко повышается, достигая такого положения, что оно как бы вращается вокруг группы N0. Схема показывает сечение, проходящее через ось молекулы. Детали распределения ядерной плотности в зависимости от ко.пебагельных и вращательных состояний (см., например, рис. 1.31) на схеме не отражены Рис. 1.3. <a href="/info/286611">Схематическое изображение</a> распределения ядерной плотности (вероятности нахождения ядер друг относительно <a href="/info/549047">друга</a>) в зависимости от <a href="/info/6472">потенциальной энергии</a> молекулы ЫЫС. По мере повышения энергии (от рис. а к в) размазанность <a href="/info/710590">ядра</a> резко повышается, достигая такого положения, что оно как бы вращается вокруг группы N0. Схема показывает сечение, проходящее через ось молекулы. Детали распределения ядерной плотности в зависимости от ко.пебагельных и <a href="/info/14659">вращательных состояний</a> (см., например, рис. 1.31) на схеме не отражены
Они связаны соответственно с распределением электронной и ядерной плотности в молекуле (индекс п от первоначальной буквы английского слова nu lear — ядерный). Такое приближение называется адиабатическим, так как скорость движения электронов в молекуле во много раз больше, чем скорость смещения ядер, и электроны адиабатически, без изменения энергии следуют за положением, ядер.  [c.26]

При переходе молекул из одних энергетических состояний в другие происходит перераспределение электронной и ядерной плотности, т. е. изменение электрических и магнитных дипольных и квадрупольных моментов молекул. По этим моментам существует еще одна классификация спектров. Оптические спектры практически все связаны с электрическими дипольными переходами, а магнитные дипольпые и электрические квадрупольные переходы наблюдаются главным образом методами радиоспектроскопии (в этой же области проявляются и электрические диполь-ные переходы). В 10 рассмотрены правила отбора для электрических дипольпых переходов.  [c.50]

Итак, все квантовые переходы можно разделить на безызлучательные и излучательныс. К излучательным переходам относятся переходы как с поглощением квантов света, так и с испусканием. Исп скание света (фотонов) может быть спонтанным и вынужденным. Кроме того, квантовые переходы подразделяются на одно-, двух- и многофотонные. В зависимости от того, как изменяются электронная и ядерная плотности в молекуле при квантовых переходах, они называются электрическими дипольными, магнитными дипольными и электрическими квадрупольпыми переходами.  [c.50]

Рнс. 1.31. Распределение ядерной плотности , пропорциональное для различны.ч коле-бательны.х состояний двухатомной молекулы. Вероятность како-го-либо межъядерного расстояния пропорциональна высоте контура, покрытого точками. Вертикальные линии ограничивают зону, в которой интегралы перекрывания при перехода.х из основного состояния ц" = 0 имеют конечное значение  [c.73]


Как и в случае двухатомных молекул, поведение электронов и ядер в многоатомной системе, связанной силами электрического взаимодействия в единое целое, определяется теми же законами квантовой механики. Стационарным энергетическим состояниям Ее, Ег, и Ег многоатомной молекулы соответствуют свои волновые функции )е, 1з и г 3г, причем распределение электронной плотности пропорционально г13е , а ядерная плотность (вероятность обнаружить ядро в том или ином элементе объема) пропорциональна  [c.86]

Ограничивать себя использованием таких фольг, которые сделаны только из одного изотопа, не обязательно. Если фольга сделана из смеси изотопов, то необходимо изменить уравнение, определяющее активацию фольги, путем учета активностей, обусловленных другими изотопами. В этом случае мы будем иметь ряд эффективных сечений для активации изотопов и несколько ядерных плотностей, что приведет к ряду уравнений, подобных уравнению (6.14) (по одному для каждого изотопа). Если периоды распада радиоактивных ядер, образованных в результате облучения нейтронами, одинаковы, то это изменение не имеет существенного значения. Однако, если периоды отличаются друг от друга, то необходимо выделить один из них. Для определения отдельного периода могут быть использованы различные методы. Излучаемые при радиоактивных распадах р-частицы часто имеют различные пробеги, и, следовательно, используя метод поглощения р-лучек, можно определить период распада. Кроме того, может иметь место и тот факт, что периоды достаточно различаются между собой и тип радиоактивного распада может быть проанализирован в зависимости от времени таким образом могут быть определены периоды изотопов, входящих в фольгу. Этот тип анализа выполняется обычным способом, т. е. проводится серия измерений числа распадов в зависимости от времени используя различное время экспозиции, определяют тем самым различные периоды.  [c.194]

В этом случае при задержке во времени на переработку накопленного вторичного ядерного топлива 6 месяцев удалось бы получить время удвоения порядка 5 лет [И]. Наиболее подходящим вариантом реактора БГР, отвечающим этим условиям, является высокотемпературный реактор с засыпанным в пустотелых перфорированных кассетах керамическим микротопливом и продольно-поперечным охлаждением топливного слоя гелиевым теплоносителем. При температуре гелия на выходе из активной зоны 750—800° С удается снизить затраты энергии на прокачку гелия до 8% и обеспечить объемную плотность теплового потока 700 MBt/m при максимальной температуре топлива 1000° С [12].  [c.8]

Важной характеристикой топливного цикла является энергонапряженность активной зоны. Увеличение энергонапряженности при постоянном ядерном соотношении рс/рм и продолжительности приводит к уменьшению количества ежегодно перерабатываемого ядерного топлива, а также размеров активной зоны и капитальных затрат, но повышает температуру ядерного топлива и затраты энергии на прокачку теплоносителя. По данным фирмы Дженерал атомик , для реакторов типа HTGR оптимальной по стоимости электроэнергии является объемная плотность теплового потока 7,5 кВт/л при ядерном соотношении рс/рм = 240 и кампании топлива примерно четыре года [20].  [c.18]

Неравномерность распределения тепловыделения по высоте и радиусу активной зоны с шаровыми твэлами, особенно в варианте бесканальной активной зоны, существенным образом сказывается на температуре топлива и, следовательно, на объемной плотности теплового потока и энергонапряженности ядерного топлива.  [c.18]

В 1969 г. Ок-Риджской лабораторией и фирмами Галф дженерал атомик и Бабкок энд Уилкокс под руководством Отделения реакторов и технологии КАЭ были выполнены расчетные проработки газоохлаждаемого реактора-размножителя, которые показали, что использование в таком реакторе разработанных для БН стержневых твэлов со стальными оболочками и окисным уран-плутониевым топливом позволяет получить более высокий коэффициент воспроизводства, однако объемная плотность теплового потока активной зоны оказывается меньшей, что существенно снижает преимущества реакторов ВГР. Переход в реакторах ВГР к более теплопроводному карбидному топливу и использование более тонких стальных покрытий и конструкции вентилируемых твэлов позволяет существенно увеличить объемную плотность теплового потока, что наряду с большим коэффициентом воспроизводства обеспечивает их решающее преимущество, по сравнению с реакторами ВН, в снижении почти вдвое времени удвоения ядерного топлива. В табл. 1.6 приведены результаты исследований влияния вида топлива на важнейшие характеристики реактора ВГР мощностью 1 млн. кВт с обычными стержневыми твэлами и температурой металлической оболочки 700° С.  [c.32]

Впервые в мире на совещании экспертов МАГАТЭ по перспективам развития реакторов Б ГР в 1972 г. в Минске советскими специалистами А. К. Красиным, Н. Н. Пономаревым-Степным, С. М. Фейнбергом были поставлены задачи по созданию газоохлаждаемых реакторов-размножителей с временем удвоения топлива примерно четыре-пять лет. При таком времени удвоения топлива открывается возможность увеличения темпов развития АЭС в стране при запланированных потребностях в урановом сырье [11]. Условием получения столь малого времени удвоения топлива в реакторах-размножителях является использование карбидного ядерного топлива, высокие объемная плотность теплового потока в активной зоне и давление теплоносителя. В дальнейшем эти концепции были воплощены в разработки проектов реакторов-размножителей с газовым охлаждением [12].  [c.36]

Шаровые твэлы высокотемпературного реактора-размножителя БГР, по сравнению с твэлами реактора ВГР, облучаются в активной зоне на порядок большим интегральным потоком быстрых нейтронов (10 нейтр./см ), имеют на два порядка большую среднюю объемную плотность теплового потока (700 кВт/л) и примерно втрое большую энергонапряженность ядерного топлива (400 кВт/кг) при практически одинаковой глубине выгорания ядерного топлива. Помимо этого, защитные оболочки микротвэлов и конструкционные материалы кассет не могут содержать большого количества легких ядер, смягчающих спектр нейтронов в активной зоне реактора БГР, и, следовательно, толщина защитных оболочек должна быть минималь ной, что затрудняет решение вопросов конструкции.  [c.37]

В табл. 5.2 показаны для различных значений средней плотности теплового потока в твэлах относительный объем твэлов в активной зоне, размеры гомогенных и гетерогенных твэлов (й/ серд=2,6) и относительная потеря давления газа в активной зоне Ар/р. Расчеты были выполнены для всех описанных ранее пяти вариантов активной зоны при изменении объемной плотности теплового потока от 5 до 15 МВт/м в предположении, что в активной зоне по принципу одноразового прохождения применено профилирование тепловыделения по радиусу за счет разного обогащения ядерного топлива в центральной и периферийной зонах. В горячей точке на оси реактора вблизи графитового пода относительное тепловыделение принято равным 0,6 среднего значения, а /Сг 1,5 по всей зоне. В расчете по зависимостям (5.21) и (5.23) выбиралось такое значение dn, чтобы Ксуслн = 10 Кроме того, считалось, что диаметр активной зоны равен ее высоте для всех значений qy.  [c.102]


Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

В источниках больших размеров необходимо учитывать само-поглощение частиц и изменение их энергии в результате упругих и неупругих рассеяний. В связи с этим определение мощности излучения больших источников становится относительно сложным. Наиболее трудоемки расчеты утечек нейтронов и у-квантов из ядерного реактора. К моменту начала расчета тепловыделения в защите должен быть выполнен физический расчет реактора, Результаты его содержат координатные распределения плотностей потоков нейтронов в активной зоне и отражателе реактора. По ним можно найти плотность утечки нейтронов из активной зоны реактора и определить распределение источников у-кваитов в активной зоне. Плотность утечки нейтронов определяется как произведение коэффициента диффузии на производную от плотности потока на границе активной зоны. Распределение источников у-квантов в активной зоне реактора дает  [c.108]


Смотреть страницы где упоминается термин Ядерная плотность : [c.186]    [c.147]    [c.503]    [c.282]    [c.458]    [c.681]    [c.186]    [c.259]    [c.8]    [c.11]    [c.13]    [c.105]   
Основы ядерной физики (1969) -- [ c.91 ]



ПОИСК



Плотность ядерного вещества



© 2025 Mash-xxl.info Реклама на сайте