Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы с короткими волокнами

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С КОРОТКИМИ ВОЛОКНАМИ  [c.87]

Для оценки прочности композиционных материалов с короткими волокнами снова следует вернуться к материалам на основе непрерывных волокон. Если волокна проходят из одного конца длинного образца до другого, то при растяжении вдоль волокон волокна и матрица деформируются одинаково при условии прочной адгезионной связи между ними. Тогда нагрузка, выдерживаемая материалом в целом, будет распределяться между компонентами материала пропорционально их относительным площадям поперечного сечения. Для любого напряжения в материале можно записать уравнение  [c.91]


Процедура определения эффективных модулей упругости композиционных материалов с пластинчатыми наполнителями описана в п. 5.2.1. Рассмотрим состояние материала, когда среда, представленная матрицей с пластинчатым наполнителем, играет роль матрицы с уже известными эффективными свойствами, и в нее дополнительно вводится дисперсный волокнистый наполнитель. Параметры, характеризующие свойства такой матрицы, обозначим индексом М. В [145] получено следующее выражение для модуля Юнга системы, содержащей произвольно ориентированные короткие волокна  [c.171]

Повреждение композиционных материалов в результате баллистического удара исследовано в работах [45, 55]. Баллистический удар характеризуется наличием малой ударной области в противоположность ранее рассмотренной методике летящей пластины. Другая разница между этими двумя методиками заключается в продолжительности импульса. В первом случае (методика летящей пластины) создаются очень короткие импульсы, менее 1 МКС, которые диспергируют из-за относительно больших диаметров волокон. Методика баллистического удара, с другой стороны, создает импульсы гораздо большей длительности (порядка нескольких миллисекунд), поэтому очень тонкие волокна меньше влияют на форму импульса. Эти различия частично являются причиной того, что сравнение поведения материалов при ударе С различными способами нагружения совершенно невозможно.  [c.329]

Классификация композиционных материалов. В табл. 1.1 дана классификация композиционных материалов. Наряду с непрерывными волокнами используются дисперсные наполнители, которые могут представлять собой очень короткие волокна, чешуйки, порошки и другие частицы. Физико-механические свойства композиционных материалов прежде всего определяются типом и свойствами наполнителя, распреде-  [c.12]

Одной из трудностей, связанных с переработкой термопластов, наполненных короткими волокнами, литьем под давлением или экструзией является сильное повреждение волокон, поэтому простые предположения, которые делались при выводе формул (2.7) и (2.8), становятся некорректными. В работе [62] показано, что в таких материалах имеется спектр длин волокон. На основе математической модели, в которой вклады в прочность композиционного материала волокон с длиной выше или ниже критической суммируются отдельно по эффективному интервалу длин, получена формула  [c.96]

Композиционные материалы, армированные частицами, короткими волокнами, нитевидными кристаллами, сваривают с использованием тех же приемов, что и дисперсионно-твердею-щие сплавы или порошковые материалы. Равнопрочность сварных соединений основному материалу в этом случае может быть достигнута при условии, если композиционный материал изготовлен методами жидкофазной технологии, армирован термостойкими наполнителями и при выборе соответствующих режимов сварки и сварочных материалов. В ряде случаев электродный или присадочный материал может быть аналогичен или близок по композиции основному материалу.  [c.503]


Композиционные материалы с короткими волокнами занимают промежуточное положение между композициями с дисперсными наполнителями и композиционными материалами с непрерывными волокнами, обладающими высокими механическими характеристиками. Поэтому прежде чем переходить к анализу свойств коротковолокнистых композиционных материалов, следует коснуться свойств материалов с непрерывными волокнами, теории усиления которых развиты и проверены в наилучшей стеиени.  [c.87]

В отличие от композиционных материалов с непрерывными волокнами в материалах с короткими волокнами значительно труднее добиться одноосной ориентации волокон. Разработаны несколько процессов для ориентации коротких волокон типа асбестовых или нитевидных монокристаллов [56], однако распределение волокон в таких широко распространенных материалах как полиэфирные пресс-композиции и литьевые армированные термопласты обычно близко к хаотическому. Хаотическое распределение резко снижает эффективность усиления полимеров короткими волокнами, так как напряжения, передаваемые на неориентированные волокна, могут быть очень малыми или даже равными нулю. Одним из путей учета относительной эффективности усиления волокнами является использование коэффициентов эффективности для волокон с заданным типом ориентации и для композиции в целом. Кренчель предложил этот способ для цементов, усиленных волокнами [57]. Он рассчитал коэффициенты эффективности усиления для некоторых идеализированных типов распределения волокон, показанных на рис. 2.38. Если композиционной материал имеет соответствующее распределение волокон, то его проч-  [c.93]

В однонаправленных композиционных материалах с бесконечными волокнами сдвиговая прочность в плоскостях, параллельных плоскости ориентации волокон, очень мала, если не предпринимаются специальные меры для резкого повышения прочности сцепления волокон с матрицей. Однако даже при обработке поверхности волокон сдвиговая прочность материалов в плоскости ориентации волокон равна сдвиговой прочности пластичной матрицы. С этой точки зрения одним из важнейших особенностей композиций с короткими волокна.ми является то, что в них трудно или экономически нецелесообразно добиваться полной ориентации волокон, и поэтому в материалах даже с хорошо ориентированными волокнами имеется большое число волокон, расположенных под некоторым углом к направлению ориентации. Эти волокна затрудняют сдвиговые деформации в плоскости ориентации и повышают сдвиговую прочность материала. Они также увеличивают его трансверсальную прочность при растяжении и уменьшают тенденцию к смещению волокон вдоль действующих или возникающих растягивающих усилий [64].  [c.100]

При обсуждении прочности композиций с короткими волокнами использовалось без дополнительного качественного анализа хорошо известное простое правило смеси для композиционных материалов с непрерывными волокнами [уравнение (7)]. Оно основано на изодеформационной модели материала, в которой принимается, что волокна имеют четко определенное и единственное значение разрушающего напряжения при растяжении о/. Это, в принципе, неверно для хрупких волокон, таких как стеклянные, углеродные и борные, прочность которых подчиняется статическому распределению. Поэтому необходимо уточнить, какое значение О/ необходимо использовать в уравнении (7). Во многих случаях правило смеси дает удовлетворительное приближение для проч-  [c.109]

ЭТОГО, если неэффективная длина волокон очень мала, а разброс прочности волокон велик, из теории наиболее слабых связей можно сделать вывод, что прочность композиционного материала может быть больше, чем рассчитанная по правилу смеси с использованием средней прочности волокон, определенной при обычной длине между зажимами [91]. Для карбопластиков, однако, было установлено [99], что их реальная прочность ниже, чем рассчитанная экстраполяцией прочности волокон к очень короткому расстоянию между зажимами с использованием модели невзаимодействующих жгутов волокон. Это свидетельствует о том, что в исследованных материалах наблюдается значительное взаимодействие между разрывами отдельных волокон. В табл. 2.5 приведены типичные показатели прочности некоторых экспериментальных и промышленных композиционных материалов с непрерывными волокнами.  [c.114]


Перекрестная укладка одинакового числа слоев в двух направлениях образует композиционные материалы с ортотропией в осях, направленных вдоль биссектрис угла между волокнами в соседних слоях. Материалы с переменным углом укладки по толщине одинакового числа слоев в направлениях О, 60 и 120° условно называют материалами звездной укладки (1 1 I). Они являются изотропными в плоскостях, параллельных плоскостям укладки слоев. Трансверсальноизотропными являются и многонаправленные материалы, в которых одинаковое число слоев укладывается в направлениях, я/ц, 2я/л,. .., л, п 3), а также хаотически армированные в одной плоскости короткими волокнами. При использовании в качестве арматуры обычных однослойных тканей получаются композиционные материалы со слоистой структурой (тек-столиты). Возможны различные комбинации структур ткань может быть уложена так, что направления основы во всех слоях совпадают или между направлениями смежных слоев образуется некоторый заданный угол. Кроме того, угол укладки и число слоев по толщине материала могут изменяться. В зависимости от этого можно выделить три основных вида слоистых структур симметричные, антисимметричные и несимметричные. К первому виду относятся материалы, обладающие симметрией физических и геометрических свойств относительно их срединной плоскости, ко второму виду — материалы, обладающие симметрией распределения одинаковых толщин слоев, но угол укладки волокон (слоя) меняется на противоположный на равных расстояниях от срединной плоскости. К несимметричным структурам относятся материалы, не обладающие указанными выше свойствами.  [c.5]

Одним из способов разделения композиционных материалов на три класса — с дисперсными частицами, короткими и непрерывными волокнами — является отношение наибольшего и наименьшего размеров частиц наполнителя — его характеристического отношения. Композиции с дисперсными наполнителями представляют собой один из крайних случаев, когда характеристическое отношение равно единице, тогда как волокнистые композиции с непрерывными волокнами — другой крайний случай, когда характеристическое отношение равно бесконечности. Между этими предельными системами и находятся композиции с короткими волокнами, для которых характеристи-ческое отношение (отношение длины к диаметру) обычно лежит в интервале от 10 до 1000. Потенциальный уси-ливающий эффект этих трех типов Р  [c.87]

Доля реальной прочности композиционных материалов с ориентированными короткими волокнами от идеальной прочности однонаправленного материала с непрерывными волокнами в решающей степени определяется величиной l/l , которая в свою очередь зависит от прочности и диаметра волокон, а также от прочности адгезионной связи или напряжений трения на границе раздела волокно — матрица. Если построить график зависимости  [c.92]

Стойкость композиционных материалов к разрушению определяется большим числом факторов и существует множество предположений, какой из вероятных микромеханических механизмов разрушения вносит основной вклад в работу разрушения. Более подробное обсуждение этого вопроса будет проведено при анализе работы разрушения материалов с непрерывными волокнами, а здесь изложены некоторые общие представления. В композиционных материалах на основе хрупкой матрицы (отвержденные эпоксидные или полиэфирные смолы) и хрупких волокон (стеклянных, углеродных или борных) поверхностная энергия разрушения волокон равна примерно 5 Дж/м , матрицы — не более 500 Дж/м , а материала в целом при хорошем его качестве и высокой степени ориентации — около 200-Дж/м и даже выше. Предполагается два основных механизма поглощения энергии при разрушении таких материалов — на преодоление трения волокон относительно матрицы при их извлечении из нее или на упругий отрыв волокон от матрицы [65]. В композициях с короткими волокнами более важную роль играет первый механизм, так как концы большинства волокон должны быть ближе к поверхности трещины, чем половина критической длины и, следовательно, эти концы будут извлекаться из матрицы при распространении трещины. При этом работа по преодолению трсиия волокон относительно матрицы при их извлечении дает основной вклад в измеренную энергию разрушения материала. Купер [66] показал, что максимальная энергия разрушения композиций с короткими волок-  [c.100]

Хотя усталостная выносливость полимеров с высокой объемной долей непрерывных однонаправленных углеродных или борных волокон обычно достаточно высока, стойкость композиций разных типов с короткими волокнами к циклическим нагрузкам значительно меньше, так как менее устойчивая матрица в этом случае подвергается большим напряжениям. В матрице легко инициируются начальные повреждения, что приводит к нарушению целостности композиционного материала, хотя волокна остаются неповрежденными. Задолго до резкого падения жесткости материала его проницаемость для воды или водяных паров сильно возрастает. Граница раздела фаз особенно чувствительна к усталостному разрушению, так как сдвиговые напряжения на границе раздела меняют свое направление в каждом цикле, а по краям волокон наблюдается особенно высокий уровень концентрации сдвиговых напряжений. Возможно также, что в композиционных материалах как с хаотическим, так и с ориентированным распределением коротких волокон, концы волокон и слабые места границы раздела служат центрами зарождения усталостных трещин.  [c.105]

Экспериментальных данных о поведении композиций с короткими волокнами при циклических нагрузках очень мало. По данным, полученным в работе [75], установлено, что предел усталостной выносливости поликарбоната при 10 циклов возрастает в 7 раз при введении 40% стекловолокон длиной 6,4 мм. В работе [76] определено число циклов до разрушения эпоксидных смол, наполненных короткими борными волокнами, и установлено, что при циклических нагрузках с амплитудой, составляющей любую долю от разрушающего напряжения, число циклов до разрушения быстро возрастает с увеличением характеристического отношения волокон, достигая постоянных значений при Ijd около 200. Эту величину можно считать критическим характеристическим отношением, выше которого усталостная прочность постоянна и пропорциональна статической прочности при изгибе (рис. 2.48). В этой же работе исследованы свойства эпоксидных смол с ориентированными асбестовыми волокнами. При этом установлено, что их поведение мало отличается от поведения эпоксидных смол с борными волокнами длиной 25 мм. Оуэн с сотр. [77] показали, что усталостная прочность при 10 циклах полиэфирной смолы, наполненной стекломатом с хаотическим распределением волокон, колеблется между 15 и 45% от разрушающего напряжения при статическом растяжении. В работе [78] изучали поведение при циклическом растяжении и изгибе эпоксидной смолы, содержащей 44% (об.) ориентированных стеклянных волокон длиной 12,5 мм. Полученные результаты показывают, что этот материал является перспективным для изделий, работающих при циклических нагрузках, так как предел его усталостной выносливости составляет более 40% от разрушающего напряжения при растяжении. Эти результаты необычны для стеклопластиков, для которых, очевидно, нет истинно безопасного нижнего предела при циклических нагрузках даже в случае непрерывных волокон [79]. Недавно были исследованы свойства при циклических нагрузках промышленных полиэфирных премиксов [80]. Полученные кривые зависимости амплитудного напряжения от числа циклов до разрушения для литьевых премиксов с хаотическим в плоскости распределением волокон (рис. 2.49) можно сравнить с кривыми, полученными Оуэном с сотр. [81] для композиционных материалов с однонаправленными непрерывными волокнами и для слоистых пла-  [c.106]


В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

Изделия из полимерных волокнистых композиционных материалов получают различными методами [3—6], среди которых важнейшими являются 1) пропитка волокнистых матов отверждающимися связующими с последующим прессованием 2) укладка слоев тканей или использование тканей объемного прядения с последующей пропиткой связующим и его отверждением 3) намотка сосудов из волокон, нитей или жгутов, пропитанных связующим, с последующим его отверждением 4) прессование или литье под давлением полимерных композиций с короткими волокнами.  [c.263]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

До сих пор большая часть исследований композиционных материалов относилась к волокнистым композитам, среди которых различаются два главных типа композиты с непрерывными волокнами и композиты с короткими (разорванными) волокнами. В свою очередь, в первом из указанных типов длинные волокна могут быть либо расположены строго параллельно друг другу, либо сплетены в ткань, пропитанную полимерным связующим. Поскольку в процессе сплетения возможны повреждения волокон и композит получается более низкого качества, здесь основное внимание будет уделено однонаправленным волокнистым композитам.  [c.63]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]

КМ с алюминиевой матрицей. Перспективы эффективного использования КМ с алюминиевой матрицей обусловлены достаточно высокими удельными прочностными характеристиками материала матрицы, например, применение волокнистых КМ с алюминиевой матрицей позволяет получить значительное преимущество в удельной жесткости и снизить массу конструкции на 30...40 %. К числу достоинств данных материалов следует относить и достаточно низкие технологические температурные параметры до 600 °С при получении КМ твердофазными методами и до 800 °С - жидкофазными. Алюминиевая матрица отличается высокими технологическими свойствами, обеспечивает достижение широкого спектра механических и эксплуатационных свойств. При дискретном армировании КМ с алюминиевой матрицей используют частицы из высокопрочных, высокомодульных тугоплавких веществ с высокой энергией межатомной связи - графита, бора, тугоплавких металлов, карбидов, нитридов, боридов, оксидов, а также нитевидные кристаллы и короткие волокна. Существуют различные способы совмещения алюминиевых матриц с дисперсной упрочняющей фазой твердофазное или жидкофазное компактирование порошковьгх смесей, в том числе приготовленных механическим легированием литейные технологии пропитки пористых каркасов из порошков или коротких волокон, или механического замешивания дисперсных наполнителей в металлические расплавы газотермическое напыление композиционных смесей.  [c.195]

В зависимости от вида композиционного материала выбирается тот или иной специфический метод его механической обработки. Композиты с термопластичной или термореактивной матрицей, с металлической матрицей, армированные короткими или непрерывными волокнами, с органическим, неорганическим или металлическим армирующим компоиеитом требуют различных методов обработки. Нами рассматриваются три основных категории материалов термопласты, реактопласты и высокомодульные композиционные материалы — борно-, арамидно- и углеродио-эпок-сидиые. Для всех процессов механической обработки, сопровождающихся образованием стружки (пыли), необходимо предусматривать устройства ее отвода.  [c.410]

Торнбороу с сотр. [3] предложил модель, учитывающую возможность наличия контактов волокно — волокно в армированном тканью композиционном материале, состоящем из непрерывной полимерной матрицы и большого числа слоев ткани. Они предположили, что соседние слои ткани частично контактируют друг с другом. Для применения электрического структурного аналога этой модели были определены три основные траектории проводимости сплошная по части матрицы, короткая сплошная по самой ткани в местах контакта волокно — волокно и, наконец, прерывная по оставшейся части матрицы и ткани соответственно. Электрический аналог потока энергии в продольном и поперечном направлениях показан на рис. 7.4 [3]. Указанные на рисунке объемные доли матрицы и наполнителя были подобраны таким образом, чтобы полученные выражения соответствовали экспериментальным данным. Таким путем было выведено следующее эмпирическое уравнение, позволяющее рассчитывать коэффициенты теплопроводности слоистых пластиков в поперечном направлении (рис. 7.4,а)  [c.292]


На рис. 7,12 приведены аналогичные данные по теплопроводности в поперечном направлении, которые показывают полное качественное соответствие данных для композиционных материалов на основе непрерывного и рубленого волокна и лишь незначительное количественное различие. То обстоятельство, что/гсг композиционных материалов на основе рубленого волокна имеет более высокое значение по сравнению с кст композиционных материалов на основе непрерывного волокна, является следствием хотя и малого, но неизбежного отклонения от идеальной ориентации коротких волокон параллельно друг другу в горизонтальной плоскости. При распространении теплового потока в такой системе изотермическими поверхностями являются плоскостц, параллельные двум внешним соседним поверхностям. Если волокно расположено под  [c.309]

Стеклянные волокна являются наиболее универсальными и эффективными армирующими наполнителями волокнистых композиционных материалов. Их получают вытягиванием из горячих фильер и используют либо в виде комплексных непрерывных нитей, либо превращают в короткие штапельные волокна. После аппретирования, необходимого для защиты элементарных волокон, из комплексных нитей получают ткани. Из-за нерегулярной текстуры тканей стеклянные волокна часто используют в виде матов. Волокна рубят и распыляют вместе с небольшим количеством склеивающего связующего, получая маты, которые легко формуются на кривых поверхностях. Изделия из стеклопластиков на основе волокон с хаотическим распределением по слоям обычно отличаются плавной кривизной и отверстия в них имеют круглую форму. В строительстве стекломаты, пропитанные полиэфирными связующими, широко используются для изготовления небольших деталей, а также вагончиков для рабочих, будок стрелочников или блоков ванных комнат. Они также применяются в качестве облицовочных плит и шифера. Прозрачность отверж-  [c.378]

Виллифорд и Снейдр [37] для изготовления композиционных материалов Ti — 6% А1—4% V—Si применили процесс формовки высокими энергиями. Металлическце порошки и волокна помещали в разовую форму и герметизировали в вакууме в контейнере-заготовке. После нагрева до требуемой температуры на собранную заготовку воздействовали надлежащим импульсом энергии в ударной машине. Продолжительность импульсов была короткой и изменялась от 3 до 15 мс. Возможности взаимодействия порошка с волокном были ограничены, и в процессе изготовления размер зерна в микроструктуре металлической матрицы изменялся незначительно. Полного уплотнения композиционных материалов можно достичь при 1000° С. Установлено, что для типичных образцов толщина реакционного слоя доходила до 6500 А.  [c.313]

В работах [39, 40] с помощью данных методов решены периодические краевые задачи механики композитов с дисперсными включениями, короткими волокнами и пластинчатыми частицами. В монографии [41] на основе метода конечных элементов развит метод локальных приближений, позволивший определить толщину переходного слоя, окружающего частицу наполнителя. Метод конечных элементов использовался в [1] для определения модулей упругости и анализа распределения напряжений в ортогонально армированных волокнистых композитах. Методы имитационного моделирования на ЭВМ процессов разрушения композиционных материалов на макро— и мик — роструктурном уровнях рассмотрены в [42]. Чрезвычайно  [c.20]

Армирование короткими волокнами проводят методами порошковой металлургии, состоящими из прессования с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич, состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку. Прочность композиционных материалов на основе алюминия армированных стальной проволокой, Ов = = 1500 МПа при кси = 0,4ч-0,6 МДж1м .  [c.234]

Кулли и Поцелуйко [6] провели сравнительные испытания верхних коленчатых рычагов заднего пилона для вертолета СН-47С фирмы Boeing из металла и композиционного материала на основе коротких волокон. Композиционный материал состоял из стекловолокон S-2 (длина отрезка волокна 12,7 мм) с нанесенным на них аппретом и эпоксидной новолачной матрицы. Среди прессованных материалов он показал наилучшие характеристики в испытаниях на допустимое разрушение при баллистическом ударе. Пилоны имели Н-образное сечение, каждая стойка которых образует дополнительную конструктивную часть, способную нести полную нагрузку при разрушении другой. Хотя масса пилона из композиционного материала приблизительно на 20% меньше массы кованой алюминиевой детали, он выдерживал допустимую разрушающую нагрузку.  [c.483]


Смотреть страницы где упоминается термин Композиционные материалы с короткими волокнами : [c.90]    [c.93]    [c.438]    [c.129]    [c.101]    [c.499]   
Смотреть главы в:

Промышленные полимерные композиционные материалы  -> Композиционные материалы с короткими волокнами


Промышленные полимерные композиционные материалы (1980) -- [ c.87 ]



ПОИСК



Волокна

Композиционные материалы

Короткий

Материалы волокнами



© 2025 Mash-xxl.info Реклама на сайте