Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Армированные термопласты

Лист армированного термопласта нагревают и помещают между двумя половинами сопрягающихся форм, которые быстро смыкаются, формуя изделие. Обычно температура форм 20° С или несколько выше. Время цикла формования составляет 10—12 с. Затем изделие выдерживают в форме еще 3—4 с для охлаждения перед удалением из формы.  [c.375]

Большинство термопластов пригодны для армирования стекловолокном, что позволяет повысить их эксплуатационные качества и обеспечивает благоприятное соотношение стоимости и эксплуатационных характеристик. В большинстве случаев при армировании термопластов повышаются прочность, теплостойкость, жесткость и стабильность размеров. Например, свойства дешевых термопластичных полимеров могут быть повышены до свойств конструкционных полимерных материалов с высокими эксплуатационными качествами путем добавки стекловолокнистого наполнителя. Полученный таким образом термопластичный армированный полимер обладает такими же, если не более высокими характеристиками, как неармированный полимер, но стоимость его ниже.  [c.379]


Армирование термопластов увеличивает их прочность, повышает в 3—4 раза величину модуля упругости, улучшает стабильность размеров и повышает теплостойкость. Распространение получили армированный найлон, полиэтилен и др. В некоторых условиях армированный найлон может обеспечить большую износостойкость, чем закаленная сталь. Во многих случаях полиамиды следует применять в узлах трения в виде тонких покрытий, полученных газопламенным и вихревым напылением. В настоящее время разработан вибрационный способ нанесения покрытия. Этот способ имеет некоторые преимущества перед газопламенным и вихревым способами [30].  [c.205]

Рис. 3. 3. Триботехнические характеристики армированных термопластов. Рис. 3. 3. Триботехнические характеристики армированных термопластов.
Армирование термопластов коротким рубленым стекловолокном для повышения прочности и других механических свойств позволяет уменьшить толщину деталей и ведет к стабильности размеров деталей (особенно при повышенной температуре), сохраняя при этом их диэлектрические характеристики и высокую коррозионную стойкость. Эти детали изготовляют литьем под дав-  [c.489]

Свариваемость термопластичного ПКМ в значительной мере зависит от свариваемости термопласта, являющегося матрицей для данного материала. В большинстве работ, посвященных изучению свариваемости наполненных или армированных термопластов, мало данных о влиянии наполнителей на процесс сварки. Частично это можно объяснить тем, что в исследованиях часто фигурировали термопласты с относительно небольшой объемной долей (до 10%) наполнителей, пленочные КМ или трубы, к прочности соединений которых высокие требования не предъявлялись.  [c.343]

Армированные термореактивные материалы хорошо известны проектировщикам, но армированные термопласты до сих пор еще мало применялись в строительстве. В результате армирования любого полимерного материала происходит увеличение его жесткости, ударной прочности, прочности на разрыв, а также регулируется изменение материала под воздействием тепла. Это как раз те факторы, которые ограничивают применение термопластов в строительстве. Единственной причиной ограниченного проникновения армированных термопластов на строительный рынок является недостаточная разработка этих материалов производителями пластмасс.  [c.34]


Применение прессовочных и листовых формовочных композиций оказалось эффективным для изготовления крупногабаритных внешних деталей автомобилей. Одновременно увеличивается объем их применения для производства различных видов перегородок, кожухов воздуходувок, панелей и различных видов корпусов приборов и оборудования. Термопласты, армированные стекловолокном, находят широкое применение для изготовления деталей машин для мытья посуды, стиральных машин, а также компьютеров, насосов и т. п.  [c.367]

Теплостойкость армированных пластиков 362 Термопласты 13  [c.508]

Измерение усталостных свойств пластмасс различных типов показало, что коэффициент усталости термопластов весьма низок и равен в среднем 10% кратковременной прочности у армированных пластмасс этот коэффициент достигает 20—35% кратковременной прочности [3].  [c.60]

Результаты измерений влияния частоты на усталость термопластов (рис. 69) и армированных пластиков (рис. 71) показывают, что с повышением частоты усталостная прочность понижается  [c.60]

Основные области применения-, кузова транспортных средств, кожухи, корпусы и транспортные контейнеры, резервуары, сосуды, ванны (в том числе и для химической промышленности), трубы, дымовые трубы и вытяжные системы, моторные и спасательные лодки, корпусы и надстройки кораблей, футеровка емкостей, армирование трубопроводов и емкостей из термопластов, кровельные материалы, мебель.  [c.315]

Влияние усталостного и абразивного изнашивания при трении различных полимерных материалов показано на рис. 1.24 [49]. На отметке 100% по оси ординат условно находится точка полностью абразивного изнашивания, а на отметке О — точка полностью усталостного изнашивания. На оси абсцисс изображено изменение модуля упругости, а на оси ординат — виды изнашивания (ВИ, %). В направлении, указанном стрелкой, осуществляется увеличение модуля упругости материала. Зона I характерна для эластомеров, имеющих весьма малый модуль упругости и значительный процент усталостного изнашивания при трении. Зона II характерна для термопластов, которые могут одновременно подвергаться и усталостному, и абразивному изнашиванию. Зона III характерна для армированных термореактивных пластмасс, модуль упругости которых достаточно велик и роль абразивного изнашивания при трении особенно значительна.  [c.66]

Рис. 3. 2. Температурная зависимость модуля упругости и прочности при изгибе термопластов, армированных углеродными волокнами (содержание волокон 30 масс.%) [3]. Рис. 3. 2. <a href="/info/191882">Температурная зависимость</a> <a href="/info/487">модуля упругости</a> и прочности при изгибе термопластов, <a href="/info/280005">армированных углеродными волокнами</a> (содержание волокон 30 масс.%) [3].
Литье под давлением термопластов, наполненных углеродными волокнами. Метод литья под давлением наряду с экструзией является наиболее распространенным промышленным методом получения изделий из полимерных материалов. Этот метод - один из самых эффективных для получения изделий сложной формы. На рис. 3. 20 приведена схема установки для литьевого формования. Литьевое формование термопластов, армированных углеродными волокнами, в основном аналогично литью под давлением термопластов, содержащих стекловолокна. При получении изделий из углепластиков методом литья под давлением необходимо иметь в виду следующее  [c.100]

Термопласты, армированные как углеродными, так и стеклянными волокнами, плохо поддаются сварке прочность сварного соединения низка поэтому желательно свести к минимуму размеры сварного шва и располагать литник вблизи зоны возможной сварки и не подвергать сварной шов действию нагрузок.  [c.103]

Штампование термопластов, армированных углеродными волокнами. В этом случае полуфабрикатом служат листовые термопластичные материалы, наполненные короткими или длинными волокнами. Изделия из них прессуют в металлической форме при температуре ниже точки плавления полимера. Этот метод аналогичен методу прессования листовых формовочных материалов, однако течение материала при переработке листовых наполненных термопластов существенно меньше. Он также близок к методу прессования между металлическими плитами. Метод штампования наполненных термопластов в известной мере сходен и с методом вакуумного формования, а также с другими методами, сочетающими давление и вакуум. Его отличительная особенность - необходимость создания более высоких давлений с использованием разъемной формы, состоящей из позитивной и негативной металлических матриц.  [c.105]


Рис. 3. 24. Схема технологической линии для штампования листовых термопластов, армированных волокнами [48]. Рис. 3. 24. <a href="/info/117168">Схема технологической</a> линии для штампования листовых термопластов, армированных волокнами [48].
Рис. 26. Армированное зубчатое колесо из термопласта Рис. 26. <a href="/info/218878">Армированное зубчатое колесо</a> из термопласта
Изоду) [2]. Из данных, приведенных на рис. 3.1, следует, что для пласти ка на основе найлона 66 существует сбалансированность всех трех механи ческих характеристик при испытании во влажной среде. Максимальнь модуль упругости имеет материал на основе полифениленсульфида, не его ударная вязкость низка. Наибольшей ударной вязкостью обладает на полненный углеродными волокнами ударопрочный найлон, но у неге очень низкий модуль упругости. Так как механические свойства наполнен ных волокна.ми термопластов сильно различаются, необходимо классифицировать их также в соответствии с областями применения. Для иллюстрации на рис. 3. 2 приведены температурные зависимости модуля упругости и прочности при изгибе термопластов, армированных углеродными волокнами [3], а на рис. 3. 3 - триботехнические характеристики армированных термопластов [3]. Из этого рисунка следует, что термопласты, армированные углеродными волокнами, обладают лучшими триботехническими свойствами по сравнению с неармированными или содержащими стекловолокна термопластами. Характерно, что армированные пластики  [c.62]

Более высокое содержание армируюш,его компонента в КМ, за исключением армированных термопластов, часто препятствует выжиманию излишка связуюш,его и приводит к увеличению количества пор в ламинате. Повышенное содержание смолы может вызвать плохую воспроизводимость свойств готовых изделий.  [c.104]

Литье армированных термопластов (АТП) и термореактивных полиэфирных материалов (в том числе фенольных смол) целесообразно применять для изготовления многих широко распространенных деталей вследствие короткого цикла изготовления, автоматизации (возможной или уже реализованной), знакомства с параметрами разработки изделий (термопласты), уменьшения работ по отделке и небольших отходов. Используя нагретый пла-стицирующий цилиндр для расплавления и холодный штамп для 498  [c.498]

В отличие от композиционных материалов с непрерывными волокнами в материалах с короткими волокнами значительно труднее добиться одноосной ориентации волокон. Разработаны несколько процессов для ориентации коротких волокон типа асбестовых или нитевидных монокристаллов [56], однако распределение волокон в таких широко распространенных материалах как полиэфирные пресс-композиции и литьевые армированные термопласты обычно близко к хаотическому. Хаотическое распределение резко снижает эффективность усиления полимеров короткими волокнами, так как напряжения, передаваемые на неориентированные волокна, могут быть очень малыми или даже равными нулю. Одним из путей учета относительной эффективности усиления волокнами является использование коэффициентов эффективности для волокон с заданным типом ориентации и для композиции в целом. Кренчель предложил этот способ для цементов, усиленных волокнами [57]. Он рассчитал коэффициенты эффективности усиления для некоторых идеализированных типов распределения волокон, показанных на рис. 2.38. Если композиционной материал имеет соответствующее распределение волокон, то его проч-  [c.93]

ABS, см. акрилонитрилбутадиенстирол Акриловый, см. полиметилметакрилат Акрилонитрилбутадиенстирол 21, 27, 30 -Армированные термопласты 33—38 — термореактивные пластмассы 35—38 Армирование углеродным волокном 54, 57 Архитектурной профессии, будущее 233 Ацеталь сополимер 27, 29 Ацетат целлюлозы 17, 18, 21  [c.240]

Усовершенствование упрочненных термопластов. Эксплуатационные качества упрочненных термопластов определяются свойствами полимера только в случае композитов на основе найлона, для армирования которых могут быть использованы стеклянные волокна того же размера, что и для эпоксидных смол. Существующие силановые аппреты применяются для упрочнения связи термопластов с непрерывным стекловолокном и, как правило, непригодны для материалов, армируемых дискретными волокнами в процессе л-итья под давлением. Для оптимального армирования те1р(мопластов стекловолокном необходимо исыкаиие новых аппретов и совершенствование технологии аппретирования.  [c.10]

Прочностные свойства полипропиленового композита, ншолнен-ного тальком, при обработке поверхности раздела такими источниками радикалов, как перекиси, в сочетании с В- или С-силанами улучшаются. Однако необходимо проведение дальнейших исследований с целью оптимизации полиолефиновых композитов с минеральными наполнителями и получения такого же эффекта упрочнения, как при использовании силановых аппретов в термопластах, армированных стекловолокном. Один из новых методов обработки поверхности наполнителя, в частности глины, оказался эффективным при сочетании сополимера на основе этилена и акриловой кислоты (ЕАА-9300) с О-силаном. Марсденом-.с сотр. [14] найдено такое соотношение О-силана п связующего, содержащего активные функциональные группы, при котором улучшаются физические свойства полипропиленовых и найлоновых композитов, полученных литьем под давлением и упрочненных стекловолокном.  [c.162]

Легкость, жесткость, прочность и формуемость стеклопластиков обусловили их использование для изготовления элементов оборудования ванных комнат, например ванн и душевых кабин. При изготовлении ванн поверхности окружаюпгих стен часто формуются заодно с ванной, что позволяет избежать щелей и соединительных узлов. Целесообразно формовать цельные ванные комнаты, включая пол, стены и потолок из армированной стекловолокнами полиэфирной смолы. Их поверхности покрывают тонким неармированным слоем полиэфирной смолы либо листовым термопластом. Такие поверхности обладают меньшей твердостью и стойкостью против воздействия острых предметов, чем фарфоровая эмаль, но их проще восстанавливать.  [c.291]


На эти материалы существуют стандарты, установленные, как правило, более 15 лет назад. Технологические методы изготовления армированных пластиков включают контактное формование с выкладкой вручную армирующего наполнителя, напыление, прессование, намотку. Биполимерные слоистые пластики, сочетающие в себе термопласты и реактопласты, делают композиционные системы более универсальными. Соединение изделий из этих материалов осуществляется либо склеиванием, либо при помощи фланцев, соединительных муфт, стыковых накладок.  [c.309]

Б химической промышленности при изготовлении оборудования из армированных пластиков наиболее широко применяют полиэфирные, эпоксидные, фурановые смолы, связующие на основе сложных виниловых эфиров. Однако имеется ряд примеров, когда биполимерные материалы на основе термопластов и реактопла-стов использовались уникальным образом для успешного решения той или иной задачи. Наряду с полиэфирными и эпоксидными смолами получили распространение также фенольные смолы и диалил-фталатные композиции. Эти материалы уже широко используются на химических заводах. Детали из армированных пластиков широко изготовлялись с применением эпоксидных смол, смол на основе сложных виниловых эфиров и полиэфирных связующих, причем последние получили наибольшее распространение при изготовлении крупногабаритных изделий.  [c.311]

Биполимерный пластик, состоящий из поливинилхлорида и полиэфирного стеклопластика, был использован для изготовления смесительной камеры. При конструировании этой системы учитывалась стойкость поливинилхлорида к кислотам с высокой окисляющей способностью. Основными преимуществами таких биполимерных композиционных систем являются относительно высокая прочность в результате армирования термопластичного — термореактивного связующего стекловолокнистым наполнителем химическая стойкость как результат сочетания термопластов и термореактивных полимеров экономия оборудования стойкость против абразивного износа стойкость к УФ-излучению оптимальные эксплуатационные характеристики, сочетающиеся с химической стойкостью и стойкостью против абразивного износа по сравнению с композициями на основе органических волокон и связующего огнестойкость при добавлении к связующему трехокиси сурьмы.  [c.330]

Наибольшее применение находят стеклопластики на основе ненасыщенных полиэфирмалеинатных смол ПН-15, ПН-16 и на основе композиции смол ПН-10 и ПН-69, Максимально допустимая температура эксплуатации полиэфирных стеклопластиков в агрессивных средах приведена в табл. 6.3. Для плавиковой кислоты и фторидов аммония армирование первого футеровочного слоя выполняют из нетканого материала на основе лавсановых или пропиленовых волокон. Химическая стойкость бипластмасс определяется свойствами термопласта (см. 6.3),  [c.99]

Термопластичные смолы, используемые для литьевого формования углепластиков . По аналогии с термопластами, армированными стекловолокнами, для литьевого формования углепластиков больше всего подходят термопластичные смолы. Наиболее широко для этих целей используют найлон 66. Наряду с этим применяют найлон 6, поликарбонаты, сополимеры акрилонитрила, бутадиена и стирола, полибутилентерефталат, полифениленсульфид и другие термопластичные полимеры. В табл. 3. 5 перечислены некоторые качественные характеристики термопластов, используемых в качестве полимерных матриц для углепластиков. По сравнению с армированными пластиками на основе термореактивных смол наполненные волокнами термопласты содержат меньшее количество  [c.59]

Типы сварных соединений из армированных пленок толщиной 0,5-1,5 мм как равно-толщинных, так и разнотолщинных с двусторонним и односторонним нанесением тер-чопластичного покрытия из поливинилхлорида, полиамида, полиэтилена, полипропилена и других термопластов, выполненные контактной тепловой (термоконтактной) прессовой сваркой, определены ОСТ 102-47-78.  [c.128]

Кромки швов сварных соединений из армированных пленок (за исключением соединения типа Н2) должны быть заплавлены слоем термопласта, который герметизирует шов и образует плавный переход к основному материалу, при этом толщина материала шва должна быть не менее одинарной толщины свариваемой пленки.  [c.128]


Смотреть страницы где упоминается термин Армированные термопласты : [c.436]    [c.509]    [c.578]    [c.34]    [c.141]    [c.141]    [c.106]    [c.51]    [c.323]    [c.20]    [c.64]    [c.81]    [c.230]    [c.231]    [c.235]    [c.432]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> Армированные термопласты


Архитектор и пластмассы (1978) -- [ c.33 , c.38 ]



ПОИСК



Армирование

Термопласты



© 2025 Mash-xxl.info Реклама на сайте