Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология пропитки

Технология пропитки следующая фильтрующие элементы, предварительно нарезанные, опускают на 2—3 мин в ванну со спиртовым раствором бакелита. Сушат элементы на воздухе в течение 24 ч. После этого изделия подвергают термической обработке при температурах, начиная с 60° С и последующем повышении до 60—80, 80—100, 100—150° С с выдержкой на каждом температурном интервале по 30 мин.  [c.277]

Пористость кожи позволяет осуществить ее пропитку, которая улучшает природные свойства. Технология пропитки кожи сложилась много лет тому назад вносимые в нее изменения и введение новых пропитывающих веществ вызваны неуклонным ростом рабочих давлений и новыми физико-химическими условиями применения кожаных прокладок.  [c.247]


КМ с магниевой матрицей. КМ с магниевой матрицей отличаются малой плотностью. В качестве матричных сплавов применяют сплавы МА2-1, МАЗ, МА8 и некоторые другие. При создании КМ с магниевой матрицей применяются углеродное и борное волокна и волокно карбида кремния. Для изготовления данных КМ могут быть использованы технологии пропитки, компрессионного литья и горячего изостатического прессования. В табл. 3.4 приведены свойства КМ магний/волокно Si .  [c.199]

Технология пропитки свай на такой установке сравнительно проста и заключается в следующем.  [c.112]

Технология пропитки графитовых труб и изделий другими смолами подробно описана в литературе .  [c.147]

Струйная (капельная) пропитка. Исключительно большой прогресс в технологии пропитки достигнут в результате внедрения струйного (капельного) способа с использованием лаков без растворителей. Внедрение этого метода позволяет механизировать процесс пропитки, снизить число пропиток, а также сократить общую продолжительность всего цикла до 0,5—1 ч. Струйный способ применяют для пропитки обмоток электрических машин малых габаритов (при пропитке крупногабаритных машин возможно неполное заполнение обмоток).  [c.140]

Основным требованием технологии пропитки является полное удаление влаги из пор перед пропиткой.  [c.67]

В настоящее время в СССР разработана технология пропитки графита бакелитовой смолой, полностью, устраняющая пористость.  [c.332]

Технология пропитки поверхности детали индикаторным раствором состоит в следующем мелкие детали погружают в индикаторную жидкость или с помощью мягкой кисточки наносят ее на диагностируемую поверхность. Для проникания индикаторной жидкости в несплошности детали необходима выдержка не менее 30 мин, после чего остатки жидкости удаляют с поверхности струей воды, нагретой до температуры 35—45°С или с помощью тампона (губки). Применение воды более высокой температурой может привести к частичному вымыванию индикаторной жидкости из полости  [c.167]

Разработан метод пропитки древесины фенолоформальдегидными смолами. Пропитка древесины раствором кремнекислого натрия с дальнейшей обработкой слабым раствором соляной кислоты или углекислотой может дать хорошие результаты только при использовании пропитывающих растворов высокой вязкости. Однако в связи с тем, что они плохо проникают в поры древесины, осложняется технология пропитки.  [c.477]

ТЕХНОЛОГИЯ ПРОПИТКИ, ЗАЛИВКИ И СУШКИ ОБМОТОК  [c.148]

Трудоемкость изготовления обмоток составляет 30—50% от общей трудоемкости производства ЭМП. Причем обмотки достаточно разнообразны по конфигурации (сосредоточенные и распределенные), числу фаз, материала (медные, алюминиевые и т. п.), способу укладки (намотка, заливка) и обработки (пропитка лаками, компаундирование битумом и т. п.), способу соединения проводов (пайка, сварка, прессование) и др. В последние годы технология обмоточного производства механизируется и автоматизируется. Полностью механизирована укладка и изготовление обмоток из круглого провода, частично механизирована— из прямоугольного провода.  [c.184]


Так, коробление стальных отливок может быть исправлено правкой. Наружные дефекты заваривают дуговой или газовой сваркой. При недоливе крупных отливок иногда допускается исправление дефекта заливкой жидкого металла. Раковины и пористость устраняют пропиткой или заделывают различными замазками, шпатлевкой или клеями. Неисправимый брак требует пересмотра конструкции отливки или технологии ее получения.  [c.86]

Технология изготовления всех девяти типов материалов была одинаковой, она содержала пропитку исходного материала в вакууме и под давлением и отверждение при заданном температурном режиме, установленном для используемого типа связующего.  [c.148]

С целью интенсификации пропитки композиции алюминий— углерод получают методом литья под давлением. Результаты испытаний образцов, полученных по такой технологии, выявили существенную нестабильность механических свойств реализованная прочность волокон в таких композициях составляла 30— 70% от рассчитанной по правилу смеси [172, 181]. Объяснения этого явления весьма противоречивы. Некоторые исследователи считают, что низкая реализованная прочность связана с ориентировкой волокон относительно оси и с неравномерностью их укладки [158], другие предполагают существенное разупрочнение волокон в связи с образованием карбида алюминия. Было показано, что в зависимости от температуры и давления формования композиций могут быть получены образцы с различными типами излома (рис. 37). Излом первого типа характеризуется выдергиванием волокон из матрицы, что свидетельствует о недостаточной связи между ними прочность такой композиции составляет 25— 30 кгс/мм . Для изломов второго типа характерна развитая, ще-  [c.85]

Однако чрезвычайно высокая реакционная способность большинства армирующих материалов в контакте с металлическими расплавами значительно сужает возможности практического применения метода пропитки. Другим важным моментом, играющим существенную роль в процессе получения композиционного материала пропиткой, является необходимость хорошей смачиваемости упрочняющих волокон жидкой матрицей, поскольку при невыполнении этого условия значительно усложняется технология получения материала.  [c.91]

Перспективной и значительно более широко применяемой разновидностью метода пропитки расплавом при нормальном давлении является непрерывная пропитка пучка волокон. Схема такого технологического процесса показана на рис. 41 [97, 98, 991. Пропитываемые волокна поступают в ванну с расплавленным металлом, не соприкасаясь друг с другом, затем они проходят через фильеру, формирующую пруток, который вытягивается с определенной скоростью, обеспечивающей на выходе отверждение матрицы с волокном. При вытягивании пруток может иметь различную степень закрутки на единицу длины. Такая технология позволяет изменять содержание волокна, обеспечивая при этом равномерное распределение волокон в поперечном сечении. Виды и формы изделий, которые можно получить этим методом, показаны на рис. 42 [97].  [c.92]

Разработан метод получения пропиткой композиционного материала на основе алюминия, упрочненного волокном из карбида кремния [113]. Особенностью изготовления этого материала является весьма высокая температура расплава, достигающая 1050° С, необходимая для обеспечения хорошей смачиваемости волокна расплавленным металлом. В результате контактного взаимодействия волокна с [расплавленным металлом при этой температуре его прочность снижается более чем на 30% (с 350 до 220 кгс/мм ). Для снижения температуры пропитки и улучшения смачиваемости было предложено наносить на волокна карбида кремния покрытия из никеля, меди или вольфрама. Применение покрытия позволяет снизить температуру пропитки до 700° С и сократить до нескольких минут время пропитки. Изготовленный по такой технологии материал с матрицей из алюминия (предел прочности 3 кгс/мм , относительное удлинение 40%), упрочненный 15 об. % волокна с покрытием, имел предел прочности 24 кгс/мм и относительное удлинение 0,6%.  [c.97]

Одной из особенностей технологии металлических композиционных материалов является то, что применение какого-либо одного из известных технологических процессов не позволяет получить компактный материал, обладающий требуемыми свойствами. При изготовлении таких материалов весьма часто приходится прибегать к последовательному осуществлению двух и более технологических процессов, например плазменного напыления и последующего горячего прессования, горячего прессования и последующей прокатки и т. д. К одному из таких комбинированных методов изготовления металлических композиционных материалов относится и вакуумно-компрессионная пропитка, сочетающая в себе элементы вакуумной пропитки и литья под давлением.  [c.105]


Контактное формование. Переработка композиционных материалов методом контактного формования, применяется в основном при изготовлении крупногабаритных конструкций и изделий сложной конфигурации. Данная технология предусматривает предварительную пропитку связующим армирующего материала, укладку его на модель изделия с последующей выдержкой при нормальной или повышенной температуре для отверждения. В настояшее время отсутствуют механизированные способы укладки армирующего материала. Ручная укладка пропитанных слоев наполнителя создает тяжелые условия труда, трудности текущего контроля за правильностью раскроя материала, равномерностью пропитки его связующим, как правило, не обеспечивает точного взаимного расположения слоев. В процессе пропитки армирующего материала трудно обеспечить постоянную вязкость связующего, вследствие протекающего процесса полимеризации при температуре окружающей среды. Особенно это характерно при формовании изделий из полиэфирных стеклопластиков.  [c.12]

II. Пропитка боросилицидных покрытий расплавом Зп—А1. В отличие от технологии пропитки силицидных слоев погружением в расплав, описанной в [3], пропитку боросилицидных покрытий на молибдене проводили отжигом предварительно боросилицированного молибдена в порошковой смеси, содержащей олово и алюминий. Толпщна слоев боросилицированного молибдена  [c.49]

КМ с алюминиевой матрицей. Перспективы эффективного использования КМ с алюминиевой матрицей обусловлены достаточно высокими удельными прочностными характеристиками материала матрицы, например, применение волокнистых КМ с алюминиевой матрицей позволяет получить значительное преимущество в удельной жесткости и снизить массу конструкции на 30...40 %. К числу достоинств данных материалов следует относить и достаточно низкие технологические температурные параметры до 600 °С при получении КМ твердофазными методами и до 800 °С - жидкофазными. Алюминиевая матрица отличается высокими технологическими свойствами, обеспечивает достижение широкого спектра механических и эксплуатационных свойств. При дискретном армировании КМ с алюминиевой матрицей используют частицы из высокопрочных, высокомодульных тугоплавких веществ с высокой энергией межатомной связи - графита, бора, тугоплавких металлов, карбидов, нитридов, боридов, оксидов, а также нитевидные кристаллы и короткие волокна. Существуют различные способы совмещения алюминиевых матриц с дисперсной упрочняющей фазой твердофазное или жидкофазное компактирование порошковьгх смесей, в том числе приготовленных механическим легированием литейные технологии пропитки пористых каркасов из порошков или коротких волокон, или механического замешивания дисперсных наполнителей в металлические расплавы газотермическое напыление композиционных смесей.  [c.195]

Для повышения коррозионной стойкости многих видов железобетонных изделий (фундаментных свай, железобетонных труб, лотков и каналов) весьма эффективным средством является пропитка их различными химически ойкими веществами (битумом, метилметакрилатом, стиролом, петролатумом), серой. Этим достигается резкое йовышение непроницаемости изделий, и поэтому пропитка может успешно конкурировать с такими методами, как устройство противокоррозионной защиты изолирующими материалами. Технология пропитки (последовательных опера гий) следующая удаление из бетона жидкой фазы путем нагревания изделия при температуре 105. .. 120 С вакуумирование изделия погружение в пропиточный состав, разогретый при необходимости до нужной вязкости нагнетание пропиточного состава в поровое пространство бетона под давлением , извлечение изделия из пропиточного состава медленное охлаждение изделия, пропитанного расплавами (битум, сера), либо полимери-задионное отверждение мономеров в поровом пространстве бетона (метилметакрилат, стирол).  [c.147]

Сплавы АЛ27 и АЛ27-1 имеют широкий температурный интервал кристаллизации, поэтомуГотливки из них в песчаную форму обладают развитой усадочной микропористостью и вследствие этого низкой герметичностью. Для повышения герметичности рекомендуется применять пропитку отливок различными пропиточными составами. Оптимальной технологией пропитки является вакуумирование деталей с последующим заполнением междендритных газоусадочных пор в стенках отливки пропиточными составами под избыточным давлением.  [c.379]

Они имеют ряд существенных преимуществ перед лаками на органических растворителях отсутствие расходования дорогостоящих растворителей, устранение токсичности и пожарной опасности, устранение вредного действия растворителя на пропитываемую изоляцию (лакоткань, эмальпроволоку и пр.). При применении водных лаков совершенно отпадает необходимость предварительной сушки изоляции перед пропиткой, так что технология пропитки значительно упрощается. Водные лаки имеют перспективу на широкое распространение."  [c.175]

Егоров Н. Г., Технология пропитки АЦЭИДа с применением вакуума и давления, Госплан РСФСР, ИИИАсбестоцемент, 1958.  [c.21]

Для пропитки древесины, применяемой для изготовления конструктивных элементов градирен, используют креозот, нейтральные углеводороды (нафталин, антрацен, фенантрен), а также высококи-пящие основания (акридин, хинолин, метилхинолин) [34]. Из нейтральных углеводородов наиболее устойчивым против вымывания из древесины является нафталин. Технология пропитки древесины органическими веществами состоит в следующем. Древесину выдерживают в сосуде, заполненном сжатым воздухом, под давлением  [c.113]

Для пропитки картера применяется бакелит или вареное масло, заполняющие внутреннюю пористость отливки при правильной технологии пропитка не ухудшает качества картера. На многих заводах поэтому пропитке подвергаются все картеры независимо от результатов гидропробы, т. е. пропитку в этом случае следует рассматривать не как лечение отливки, а как одну из производственных операций, улучшаюш ую герметичность стенок отливки.  [c.450]

Эффективность. Энергосберегающая технология защиты от увлажнения изоляции активных частей трансформаторов уменьшенным на 100—300 м объемом трансформаторного масла после термовакуумной обработки с последующей допропиткой в собственном баке снижает расходы электроэнергии на 10 % и теплоэнергии на 8 % по сравнению с действующей технологией пропитки. Годовой экономический эффект за счет уменьшения расходов этих энергоресурсов оценивается в 1870 руб. на один вакуум-сушильный шкаф. Срок окупаемости дополнительных затрат на переоборудование одного ВСШ составит 10—12 мес.  [c.54]


Данный вид отделки достигается огнестойкой пропиткой (ОП). При работе по обычной технологии под отделку ОП используютс ткани полульняные (с содержанием льна — 50% и хлопка — 50%), я их стойкость к горению составляет 7—10 секунд. Мы првдположилк, что повысить огнестойкость можно предварительной активацией йе подготовленной ткани низкотемпературной плазмой.  [c.91]

Композиционные материалы, образованные системой трех нитей, создают, как правило, большой толщины (до 500 мм). Технология создания таких материалов имеет специфические особенности, обусловленные процессами пропитки и формования. Оба процесса проводятся под вакуумом и давлением в закрытых пресс-формах и зависят от плотности ткани и типа связующего. Поэтому выбор типа связующего для создания рассматриваемого класса материалов требует детального изучения. О важности этого фактора свидетельствуют данные экспериментов, полученные на двух различных в технологическом отношении типах матриц — эпоксидной ЭДТ-10 и феноло-формальдегидной (ФН). В качестве арматуры при изготовлении трехмерноармированных композиционных материалов были использованы кремнеземные и кварцевые волокна. Структурные схемы армирования исследованных материалов были одинаковыми. Они представляли собой взаимно ортогональное расположение волокон в трех направлениях. Содержание и распределение волокон по направлениям армирования этих материалов приведено в табл. 5.13.  [c.156]

В СССР была разработана те/люлогня производства слоистых электроизоляционных пластиков, для которой характерна пропитка бумаги или ткани жидкими водными суспензиями фенолформаль-дегидных смол при сушке пропитанной бумаги вода испаряется. Данная технология производства слоистых пластиков совершенно не требует применения спирта, и внедрение ее в производство некоторых марок СЛ0ИС1ЫХ пластиков дало большую экономию. Пропитанная (бакелитизированная) бумага нарезается листами требующегося формата, собирается пачками нужной толщины и укладывается между стальными плитами гидравлического пресса. Прессы для производства слоистых пластиков с целью повышения производительности выполняются с располагаемыми в несколько этажей плитами и заготовки из пропиточной бумаги закладывают одновременно во все этажи. Во время прессования через просверленные в плитах каналы пропускается пар, который нагревает плиты, от плит теплота передается прессуемому материалу, бакелит в нем расплавляется, заполняет поры между волокнами бумаги и отдельными листами ее и, запекаясь (переходя в стадию С), твердеет и связывает отдельные слои бумаги. При прессовке гетинакса обычно устанавливают давление около I МПа температура плит пресса 160—165 °С время выдержки под давлением от 2 до 5 мин на каждый миллиметр толщины досок, считая с момента достижения плитами пресса указанной выше температуры. По окончании прессования, перед выемкой отпрессованных досок, последние охлаждаются примерно до температуры -г60°С, для чего подача пара в каналы плит прекращается, и в эти же каналы пропускается холодная вода. У отпрессованного материала края обрезают под прямым углом циркульной пилой.  [c.153]

Способ изготовления композита заметно влияет на характеристики поверхности раздела. Композиты алюминий — бор, полученные путем пропитки расплавленным алюминием, принадлежат к третьему классу им присущи неравномерная коррозия волокна и неравномерный рост борида алюминия (рис. 6). Напротив, в композитах, изготовленных по оптимальной технологии диффузионной сварки, не происходит реакции на поверхности раздела на рис. 7 виден лишь один случайный кристалл борида. Для выяснения причин этого различия следует рассмотреть механизм диффузионной сварки. Такое рассмотрение послужит поводом для более общего анализа влияния технологии изготовления- 1 омиозита на характеристики поверхности раздела.  [c.30]

Первые работы по упрочнению металлов окислами были сосредоточены, в основном, на технологии получения композитов методом пропитки расплавом и фундаментальных исследованиях процессов смачивания окисла жидким металлом и формирования связи с окислами. Исследования систем жидкий металл — твердый окисел стимулировались наличием исходных окисных материалов в виде матов из очень мелких усов AI2O3 и стеклянной пряжи. Для заполнения чрезвычайно тонких каналов между волокнами в этих материалах естественно было воспользоваться пропиткой жидким металлом. В результате этих исследований получено много практически важных данных, обзор которых и будет здесь приведен. Цель настоящего обзора — описать основы смачивания, пропитки расплавом и образования связи, а также проанализировать имеющиеся данные для отдельных систем металл — окисел.  [c.314]

Интенсивные исследовательские работы по упрочнению усами-сапфира никелевых сплавов тем не менее не позволили разработать технологию производства композита с нужными свойствами (Ноуан [37]). Много осложнений возникло в связи с неоднородностью усов по размеру и качеству. Однако основное препятствие для дальнейших разработок составили большие трудности в изготовлении воспроизводимых испытательных образцов путем пропитки расплавом или гальванического осаждения с последующим горячим прессованием (ЕР/РВ). При исследовании процессов пропитки расплавом обнаружилась необходимость применения покрытий для облегчения смачивания. Однако не было найдено покрытий, устойчивых в контакте с жидким металлом при температурах пропитки (- 1720 К). Условия смачивания были труднодостижимы, и в большинстве случаев испытания на растяжение не были проведены в связи с большой пористостью образцов.  [c.345]

Формование вручную. Наиболее распространенным методом изготовления изделий, применяемых в морском флоте, является метод формования вручную или контактного формования. По этой технологии, при использовании полиэфирных смол, отверждение происходит при комнатной температуре и нормальном давлении. Этот метод почти исключительно применяют при изготовлении деталей с одним облицовочным слоем и многослойных панелей коммерческого назначения. Технологический процесс формования заключается в обработке сухого упрочнителя катализированной смолой с помощью резиновых отжимных валиков или роликов. В меньшей степени используются предварительно пропитанные упрочнители, причем пропитка производится иепосредственио перед формованием. Сложные методы термообработки редко при-  [c.246]

В химическом машиностроении под руководством НИИХиммаша выполнен ряд ценных исследований разработаны метод и технология получения беспористых графитов путем пропитки фенольно-формальдегидной смолой, совместно с Новочеркасским электродным заводом созданы конструкции и налажен выпуск теплообменной, реакционной и колонной аппаратуры из этих графитов установлена применимость различных видов стеклопластиков на фуриловой, эпоксидной, фенольной и полиэфирных смолах в химическом машиностроении и разработана технология изготовления фильтровального оборудования (рам и плит фильтрпрессов), которая внедряется на заводе стеклопластиков (Северодонецк) разработана технология изготовления емкостной аппаратуры из стеклопластиков, плакированных полиэтиленом (опытные аппараты прошли производственные испытания на Рубежанском химкомбинате) создана технология получения листов, плакированных полиэтиленом суммарной толщиной 6—8 мм, из которых изготовлены опытные аппараты емкостью до 100 л разработана технология изготовления уплотнений на основе фторопласта с наполнителями для компрессоров без смазки, пропитки графитов кислотощелочестойкой смолой ФЛ-2, изделий из капролона (на Уралхиммаше построена установка, позволяющая получить отливки весом до 40—45 кг и освоено изготовление большой номенклатуры машиностроительных деталей). В УКРНИИХиммаше исследованы защитные покрытия химической аппаратуры полимерными материалами, разработана технология и создана специальная установка для защиты емкостей методом напыления, освоена защита листовым полиэтиленом и фторопластом-3 путем накатки  [c.218]


Пропитка. Наиболее распространенным способом увеличения плотности графита, а следовательно, улучшения его физических свойств, в том числе прочностных характеристик, является пропитка (импрегнирование) полуфабриката (заготовок материала после обжига) каменноугольным пеком с последующей термообработкой — повторным обжигом и графитацией. Наряду с этим способом графит уплотняют пропиткой фенол-формальдегидными смола ми, фуриловым спиртом с последующим обжигом. Пропитывающие вещества должны обладать 1) высокой химической стойкостью, приближающейся к стойкости графита 2) хорошей адгезией к графиту и способностью обеспечивать низкую проницаемость пропитанного графита 3) подвижностью и легкостью проникновения в мелкие поры графита 4) максимальным увеличением механической прочности графита. Независимо от вида пропитывающих веществ технология и оборудование, применяемые для пропитывания углеграфитовых материалов, во многом схожи.  [c.24]

Чтобы понять суть дела, рассмотрим в двух словах существующую технологию. Прежде всего материал. Им служит стеклянная ткань, пропитываемая различными смолами. Куски такой ткани накладываются на форму из гипса, дерева, бетона или другого недорогого материала, политую жидкой полиэфирной смолой. Пульверизатором или кистью на стеклоткань опять-таки наносят слой жидкой смолы. Так все время и чередуют ткань со смолой. Чтобы получить пятимиллиметровый слой стеклопластика, приходится накладывать по 10—14 слоев стеклоткани. И каждый раз тщательно прикатывать и простукивать образовавшуюся массу ручными роликами и кистями, чтобы удалить из нее воздух, ухудшающий механические свойства материала. После того как весь корпус таким образом оказывается выклеенным и прикатанным, его обжимают и нагревают до затвердения смолы. Трудоемкость подобной технологии неимоверно высокая, рабочим приходится дышать смоляными парами, которые могут содержать токсичные вещества, и никакая самая совершенная вентиляция не может полностью избавить от этого. Правда, сейчас разработана технология, позволяющая в значительной степени механизировать укладку и пропитку стеклопластика. Специальные пневматические машины гонят по шлангам вместе со струей воздуха нарезанное стекловолокно и образующуюся хаотичную массу опять-таки пропитывают смолами. Но прочность стеклянного войлока оставляет желать лучшего. Ведь и при использовании стекловолокна прочность конструкций получается не очень уж высокой, несмотря на то, что сама стеклонить в этом отношении превосходит многие стали (250 килограммов на квадратный миллиметр для нее далеко не предел). Причина заключается в хаотическом, беспорядочном распре-  [c.189]


Смотреть страницы где упоминается термин Технология пропитки : [c.104]    [c.91]    [c.176]    [c.180]    [c.206]    [c.40]    [c.220]    [c.990]    [c.231]   
Смотреть главы в:

Физико-химические основы производства радиоэлектронной аппаратуры  -> Технология пропитки



ПОИСК



Пропитка

Технология пропитки, заливки и сушки обмоток

Технология сушки и пропитки бумажной изоляции



© 2025 Mash-xxl.info Реклама на сайте