Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мембраны — Колебания 418 — Частота

Мембраны — Колебания собственные — Частота 375  [c.547]

Ползучесть — Характеристика 286 Мембраны — Колебания 418 — Частота  [c.632]

Любое тело, совершающее механические колебания, частота которых лежит в указанном диапазоне, является источником звука. Так, например, колеблющаяся струна, мембрана, пластинка п т. п. вызывают продольные колебания в окружающей среде. Источником звука может быть и не твердое тело, а газообразное или жидкое, например паровозный свисток, органная труба, голосовой аппарат человека, водопроводный кран (его пение ) и т. п. Здесь источником звука являются колебания газа или жидкости, заключенных в определенном объеме или протекающих по некоторым каналам. Источник звука, вызывая вблизи себя определенные колебания плотности (или давления), вызывает такие же колебания плотности частиц окружающей среды, распространяющиеся в виде волн, вообще говоря, во все стороны.  [c.503]


Мембраны — Колебания собственные — Частота 375 -гофрированные—-Расчет на жесткость 211, 212  [c.547]

Мембраны — Колебания собственные — Частота 3 — 375 - гофрированные — Расчет на жесткость 3 — 211, 212  [c.437]

Излученные волны трансформируются из акустоэлектрических в электромагнитные, длина волны которых К А. Поэтому излучение приводит к синхронизации частоты колебаний расположенных поблизости диполей белковых молекул независимо от их точной дислокации. Естественно, синхронизируются лишь те диполи, одна из резонансных частот которых близка частоте ю синхронизирующих колебаний — частоте распространяющейся по мембране акустоэлектрической волны. Непосредственно у поверхности мембраны синхронизированные по частоте колебаний диполи белковых молекул взаимодействуют с полем стоячей акустоэлектрической волны, амплитуда которой быстро снижается при удалении от поверхности мембраны [128]. Изменение этого поля во времени и вдоль поверхности мембраны описывается известным выражением  [c.74]

Постановка задачи. Предположим, что удалось получить в колебательном контуре радиоприемника колебание, в точности воспроизводящее модулированное колебание, излучаемое передающей радиостанцией. Если мы это колебание, даже усиленное, заставим действовать на громкоговоритель, т. е. пошлем в обмотку последнего ток, пропорциональный нашему модулированному колебанию, мы ничего не услышим. Дело не только в том, что мембрана громкоговорителя, собственная частота которой расположена в звуковом диапазоне, неспособна заметно реагировать (в силу сказанного в гл. П1, 8) на колебания радиочастоты (например, частоты 10 герц). Пусть даже мы пользуемся электромеханическим преобразователем с очень малым собственным периодом, например пьезокварцем (см. гл. VI). Он будет при подходящих условиях создавать колебания давления Д/ , воспроизводящие подводимое к кварцу модулированное электрическое колебание. Тем не менее ухо ничего не будет воспринимать, так как оно нечувствительно к акустическим колебаниям частоты 2-10 герц и выше.  [c.135]

НИИ предварительного усилителя возникает переменное напряжение, прямо пропорциональное напряжению поляризации н скорости колебания мембраны и обратно пропорциональное высоте воздушного зазора и круговой частоте диапазоне частот чувствительность микрофона будет постоянной, если отношение скорости колебания мембраны к частоте будет постоянным или, что то же самое, смещение мембраны сохраняется постоянным.  [c.260]

Оз) обращается в бесконечность при частотах колебаний мембраны, равных собственным частотам трубки (резонанс) в действительности, конечно, он все же остается конечным благодаря наличию эффектов, которыми мы пренебрегли (например, трения, влияния излучения звука).  [c.416]


Определить собственные частоты колебаний мембраны прямоугольной формы (с длинами сторон а и 6).  [c.143]

Прежде всего, излучатели звуковых волн, применяемые в области акустических частот, оказываются мало пригодными для излучения ультразвука. Основное затруднение заключается в том, что ускорения мембраны, излучающей ультразвуки, должны быть очень велики, так как амплитуда ускорений пропорциональна квадрату частоты (при заданной амплитуде смещений). Для того чтобы мембрана, имеющая не слишком малую массу, совершала вынужденные колебания высокой частоты и достаточной амплитуды, потребовались бы огромные силы. Помимо этого возникает ряд других трудностей, с которыми не удалось бы справиться, сохранив в ультра-акустических излучателях принцип обычного громкоговорителя.  [c.744]

Когда требуется усилить один определенный тон, выгодно использовать явление резонанса. Для этого нужен такой излучатель, частота собственных колебаний которого равна частоте усиливаемого звука. Примером такого излучателя является резонансный ящик камертона. В том же случае, когда необходимо в равной мере усиливать различные звуки (например, звуки человеческой речи), нужно, наоборот, всячески избегать явлений резонанса. Только при этом возможно воспроизвести правильное соотношение амплитуд составляющих колебаний. Следовательно, для равномерного усиления различных звуков колебания мембраны должны быстро затухать, а частота ее собственных колебаний должна быть больше частоты воспроизводимых звуков.  [c.236]

Пусть имеется вертикальная труба высотой L с жесткими боковыми стенками и жесткой верхней крышкой. Труба заполнена дисперсной смесью. На дне (а = 0) с помощью подвижного поршня пли мембраны задаются малые гармонические колебания давления с амплитудой Аро и с частотой со, а на верхней крышке х= L скорость несущей среды равна нулю  [c.366]

Таким образом, полный прогиб получается в результате наложения бесконечного числа гармоник, меняющихся с течением времени по закону простых гармонических колебаний с частотами Для мембраны (4.45) уравнение движения имеет вид  [c.117]

Интересно также отметить, что подвижной анод А механотрона этого типа имеет форму конуса (фиг. 1, Э), основание которого обращено к эластичной мембране М. Сделано это с целью уменьшения момента инерции свободного конца подвижного стержня относительно оси качаний, находящейся приблизительно в плоскости мембраны, что позволяет повысить собственную частоту колебаний кинематической системы механотрона. Резонансная частота колебаний подвижной системы такой лампы равна 12 ООО пер/сек. Эта особенность механотрона позволяет пользоваться им в качестве чувствительного элемента ряда систем акустических датчиков.  [c.117]

Для таких целей, однако, оказывается в ряде случаев значительно более удобным мембранный датчик динамических давлений, принципиальная схема которого приведена на фиг. 6, д. Такой датчик, действующий на основе использования продольного способа управления затрудненным тлеющим разрядом, разработан автором совместно с А. А. Байковым [5]. Здесь мембрана М прогибается под действием контролируемого давления, приближаясь к электроду Э. При этом повышается падение напряжения на датчике. Используя достаточно жесткую мембрану, имеющую высокую частоту собственных колебаний, можно получить датчик, пригодный для регистрации быстротечных процессов.  [c.129]

Здесь о —радиус мембраны. Найдя корни этих уравнений, сможем определить частоты свободных колебаний мембраны.  [c.247]

В последние годы получили распространение активные пневматические амортизаторы, обеспечивающие низкие собственные частоты установленного на них оборудования и ограничивающие амплитуды колебаний при низкочастотном возбуждении. В работе рассмотрен мембранный амортизатор, выполненный по схеме аппарата на воздушной подушке (АВП) с гибким ограждением [1]. В качестве источника воздуха используется заводская воздушная магистраль давлением /Jq. При подаче воздуха мембрана 3 принимает торообразную форму и образует нагнетательную  [c.72]

Прямоугольная мембрана. Частота собственных колебаний  [c.418]

Низшая частота собственных колебаний мембраны, имеющей форму, отличную от круга, определяется по формуле  [c.419]


Где / — частота колебаний R я h — радиус и толщина мембраны р — плотность полимера х — коэффициент Пуассона р — функция Бесселя.  [c.238]

Здесь V = Э /Эх + Ъ /Ъу - оператор Лапласа, Г - граничный, контур мембраны. Частота собственных колебаний мембраны v связана с величиной собственного значения П задачи (5.2.1) следующим соотношением  [c.153]

В качестве примера системы первого рода можно привести способ модулирования излучения вольтовой дуги по Симону (рис. 280). Схема работает следующим образом переменная составляющая микрофонного тока через трансформатор Т накладывается на постоянный ток питания дуги и модулирует дуговой разряд с частотой колебаний мембраны микрофона.  [c.375]

В общих чертах такая же картина, как в ст[)уие, будет наблюдаться н при колебаниях упругих пластинок или пленок. Если упругую пленку, например тонкий лист металла, натянуть на рамку, то такая NK M6pana будет обладать также бесконечным числом нормальных колебаний. Частоты этих колебаний зависят от размеров и массы мембраны и ее натяжения. Но каждому нормальному колебанию соответствуют уже не отдельные узловые точки, а целые узловые линии, которые при данном колебании остаются в покое. Такие же узловые лннии существуют и при колебаниях упругой пластинки. Обнаружить узловые линии колеблющейся пластинки можно следующим образом. Если на металлическу]о пластинку насыпать слой мелкого песка и затем возбуждагь в ней колебания, проводя но краю пластинки смычкам, то песок  [c.656]

Источником ультразвуковых колебаний служил генератор А-62411 с номинальной выходной мощностью 1,5 кет и частотой от 18 до30кг . Ультразвуковые колебания частотой 19,Бкгц от магнито-стрикционного преобразователя типа ПМ-1-1, 5Д-1 передавались в ванну, дном которой служила мембрана излучателя. Пьезоэлектрический щуп (зонд) для измерения интенсивности ультразвука имел высокую чувствительность, не зависящую от частоты колебаний. Кроме того, у него отсутствовала резко выраженная направленность как в горизонтальной, так и в вертикальной плоскостях, что позволяло избежать ошибки в определении звукового давления при встречном расположении излучателей. Конструкция зонда изображена на рис. 1.  [c.183]

В указанных схемах нижний диапазон эффективности ограничен значением собственной частоты датчика вибрационных перемещений. Устранение этого ограничения достигается в гидравлической виброзащитной системе, динамическая модель которой приведена на рис, 10.50 (описание позиций см. к рис. 10.49). Силовая система в виде гидроцилиндра здесь выполнена в одном корпусе с управляющей системой. Управляющая система содержит механизм регулирования давления рабочей жидкости, состоящий из датчика в виде чувствительной мембраны, регистрируюнхей колебания давления в полости силового [1илиндра, заслонки, жестко укрепленной на мембране, и образующий вместе с соплом элемент, вырабатывающий управляющий сигнал.  [c.306]

К подвижной системе 2 электродинамического возбудителя 1 колебаний через фланец 3 присоединяется резонансная мембрана 4, несущая активный захват 5 для испытуемого образца 6. Второй конец образца зажимают в захват 7, расположенный на упругом элементе датчика 8 силы, имеющего тепзорезисторные преобразователи. Датчик силы и регистрирующая аппаратура 15 образуют динамометр для измерения переменных сил, действующих на испытуемый образец. Датчик силы 8 укреплен на инерционном элементе 10 с большой массой. Инерционный элемент для снижения потерь энергии подвешен на гибких тросах 9. К инерционному элементу прикреплен пьезоэлектрический датчик 11 виброускорения. Сигнал с датчика ускорения подается на блок 18 управления, входящий в комплект вибростенда ВЭДС-100. Этот блок содержит измеритель виброускорения, задающий генератор со сканированием частоты и систему автоматического поддержания заданного виброускорения. Выходной сигнал с блока 18 поступает на вход усилителя 21 мощности, питающего через резистор 14 подвижную катушку электродинамического возбудителя колебаний. Машина работает в режиме прямого эластичного нагружения на резонансной частоте, определяемой жесткостью испытуемого образца.  [c.131]

Принцип измерения в этом устройстве основывался на том, что при определенной частоте и амплитуде колебаний мембраны 1 молоточек 2 начинает дребезжать, периодически отскакивая от мембраны и ударяясь о нее вновь. Момент возникновения такого виброударного режима легко улавлршается на слух с помощью микрофона 3.  [c.232]

Ультразвуковая очистка поршневых колец. Экспериментальноконструкторским бюро г. Одессы была проведена серия опытов по ультразвуковой очистке поршневых колец ДВС от различного вида загрязнений. Схема опытной установки показана на рис. 104. Стальная ванна 1 имеет двойные стенки, между которыми расположены электронагреватели 2 и асбестовая прокладка 3. Источником колебаний является генератор 8 типа УЗМ-1,5, имеющий выходную мощность 1,5 квт и частоту диапазона 15—30 кгц. Магнитострикционный вибратор 5 типа ПМС-6, передающий колебания воды, своей мембраной 7 на резиновых прокладках прикреплен к днищу ванны. Мощность его 2,5 квт, охлаждается водой через входной и выходной патрубки 6. Ультразвуковая очистка производится в стеклянном стакане 4, в котором находится моющий раствор и изделие 9. Очистка ведется при частоте 18—21 кгц и интенсивности 0,3—0,5 в см в моющих растворах с добавлением эмульгаторов. Применение высококонцентрированных щелочных растворов не рекомендуется во избежание коррозии и эррозии металла. В табл. 39 показана продолжительность очистки колец различного размера в зависимости от состава моющего раствора при температуре 60° и размерах колебательной мембраны 300 X X 300 мм.  [c.208]


В рассматриваемый период бурное развитие получают оптические системы связи. В 1870 г, был изобретен светосигнальный прибор Манжена, который долго применялся в XIX в. в различных армиях. Он состоял из керосиновой лампы, расположенной в металлическом яш,ике. Пламя лампы, находившееся в фокусе линзы диаметром около 100 мм, давало параллельный световой пучок, прерыванием которого и подавались телеграфные сигналы по азбуке Морзе. Примерно в это же время (середина XIX в.), когда не только не существовало фотоприемников, необходимейшей части всякого оптико-электронного прибора, но и сам фотоэлектрический эффект ещ е не был открыт, делались попытки создать прибор для передачи и приема оптических сигналов, модулированных звуковой частотой. В качестве индикаторов приходящих сигналов применялись довольно грубые устройства, действие которых основывалось на тепловом нагревании световыми лучами. Понятно, что такого рода устройства не могли работать удовлетворительно они были мало чувствительны и обладали большой инерционностью. Только после развития техники изготовления фотоэлементов оптическая телефония получила основу для своего развития. В 1880 г. А. Г. Белл построил так называемый фотофон, состоящий из передатчика, модулированного звуковой частотой пучка лучей, и приемника с селеновым фотоэлементом. Вышедший из передающей станции параллельной пучок лучей падал на зеркальную мембрану микрофона и после отражения от нее направлялся к приемной станции. При колебаниях мембраны поверхность ее деформировалась и в зависимости от степени отклонения от плоскости пучок отраженных ею лучей становился более или менее расходящимся. В приемную часть, следовательно, поступало большее или меньшее количество света. 1880 г. можно считать годом рождения оптических систем связи. На протяжении последующих лет было разработано и описано различными авторами несколько систем оптических телефонов, различающихся между собой по преимуществу способами получения модулированного пучка световых лучей. Наибольший интерес представляет способ модуляции светового потока, предложенный в 1897 г. Г. Симоном. Он использовал в качестве источника излучения дуговую лампу, предложенную русским изобретателем П. Н. Яблочковым, установленную в фокусе передающего параболического зеркала. Излучение лампы модулировалось системой, состоящей из микрофона, трансформатора и источников питания. Дальность работы телефона Симона была в десять раз больше дальности работы фотофона Белла и достигала примерно 2,5 км.  [c.379]

Волноводные моды (волноводные волны). В В. м. могут возбуждаться разл. типы волн, отличающиеся структурой эл.-магн. поля и частотой (моды). Волноводные моды находят из решения Максвелла уравнений при соответствующих граничных условиях (для иде-альных проводников равенство нулю тангенциальной составляющей электрич. поля). Поперечная структура полей в В. м. определяется скалярной ф-цисй ц) х, у), удовлетворяющей ур-нию идеальной мембраны с закреплёнными (ф 5=0) или свободными (йф/<Эп 5=0, п — нормаль к границе S) краями в зависимости от типа поляризации эл.-магн. поля. Задача о собств, колебаниях мембраны имеет бесконечное, но счётное мношестнэ решений, соответствующих дискретному набору действительных собств. частот. Каждое из этих собств. колебаний соответствует либо нормальной волне, распространяющейся вдоль В. м., либо экспоненциально убывающей или нарастающей колебат. модам.  [c.308]

Динамика колебаний. Свободные, пли собственные, К. являются движением системы, предоставленной самой себе, в отсутствие внеш. воздействий. При малых отклонениях от состояния равновесия движения системы удовлетворяют суперпозиции принципу, согласно к-рому сумма двух произвольных движений также составляет допустимое движение системы такие движения описываются линейными (в частности, дифференц.) ур-ниями. Если система ещё и консервативна (т. е. в ней нет потерь или притока энергии извне), а её параметры не изменяются во времени (о переменных параметрах будет сказано ниже), то любое собств. К. может быть однозначно представлено как сумма нормальных колебаний, синусоидально изменяющихся во времени с определ. собств. частотами. В колебат. системах с сосредоточенными параметрами, состоящих из JY связанных осцилляторов напр., цепочка из колебат, электрич. контуров или из соединённых упругими пружинками шариков), число нормальных К. (мод) равно 7V. В системах с распреде лёнными параметрами (струна, мембрана, полый или открытый резонатор) таких К. существует бескопечное множество. Напр,, для струны с закреплёнными концами длиной L моды отличаются числом полуволн , к-рые можно уложить на всей длине струны L — nX 2 (д=0, 1, 2,. . ., оо). Если скорость распространения волн вдоль струны равна v, то спектр собств. частот определится ф-лой  [c.401]

Р. различаются прежде всего физ. характером происходящих в них процессов. Так, существуют механич., акустич., эл.-магн. и др. Р. Напр., одномерным механич, Р. является струна с закреплёнными концами, двумерным — упругая мембрана. В случае акустич. колебаний роль Р. часто выполняют разл. трубы, колбы, сосуды, наполненные газом (воздухом) (ем. Резонатор акустический). Акустическими Р. могут служить комнаты, залы или их отд. части, что приводит к эффекту реверберации (продолжительного ахового звучания на избранных частотах) и нарушает акустич, совершенство помещений. Уникален по своим свойствам (диапа-зояность, перестраиваемость и т. п.) Р. голосового аппарата человека и животных.  [c.317]

Рабочий зазор и подвижная обмотка охлаждаются водой. Подвижная обмотка 3 выполнена без каркаса для уменьшения ширины рабочего зазора. Витки обмотки имеют прямоугольное сечение. Они склеены и присоединены к несущей части подвижной системы специальными разъемными болтами. Несущая часть подпижной системы 4 изготовлена из магниевого сплава и представляет собой коническую оболочку с ребрами, Верхняя часть является столом стенда. Изделие крепится к столу стенда через специальные резьбовые втулки б из немагнитной стали. Подвижная система представляет собой весьма жесткую конструкцию, обеспечивающую проведение испытаний в широком диапазоне частот. Упругие элементы (подвеска) состоят из двух текстолитовых мембран 7 с пазами, расположенными по окружностям различного радиуса. Для компенсации прогиба от силы тяжести при испытаниях изделий различной массы применены пневмокамеры S. При повышении давления в пневмокамерах общая жесткость подвески увеличивается. Пневмокамеры также увеличивают демпфирование колебаний нижней мембраны, что имеет значение при испытаниях на низких частотах.  [c.433]

Сходимость метода иллюстрирует график на рис. 5.14. На нем по горизонтали отложен параметр X, а по вертикали — число приближений (высшая стецень ряда (5.5.2)), необходимое для сходимости первых фтырех значащих цифр частоты первого тона колебаний мембраны с Ь/а = 1,2. Значения частот сходились к полученным ранее методом продолжения по параметру ( 5.2). Из графика видно, что 16-ти приближений оказалось достаточно только для сходи юс1И в области X < 0,21. При этом с ростом X число приближений резко возрастает.  [c.174]


Смотреть страницы где упоминается термин Мембраны — Колебания 418 — Частота : [c.203]    [c.186]    [c.40]    [c.40]    [c.277]    [c.96]    [c.60]    [c.331]    [c.128]    [c.70]    [c.102]    [c.318]    [c.202]    [c.166]    [c.288]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.0 ]



ПОИСК



Волновое движение в бесконечной мембране. Деформация волн Простые гармонические волны. Бесселевы функции. Допустимые частоты. Фундаментальные функции. Соотношение между параллельными и круговыми волнами. Барабан. Допустимые частоты Вынужденные колебания, конденсаторный микрофон

Колебания мембран

Мембрана

Мембраны — Колебания 418 — Частота гофрированные

Мембраны — Колебания 418 — Частота плоские

Мембраны — Колебания 418 — Частота собственных колебаний

Мембраны — Колебания собственные Частота

Мембраны — Колебания собственные Частота гофрированные — Расчет на жесткость

Мембраны — Колебания собственные Частота плоские — Расчет на жесткост

Частота колебаний

Частота колебаний (частота)

Частота собственных колебаний — Определение мембран



© 2025 Mash-xxl.info Реклама на сайте