Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения непрерывности, движения и энергии

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ НЕПРЕРЫВНОСТИ, ДВИЖЕНИЯ И ЭНЕРГИИ  [c.8]

С другой стороны, выпуская движение из точки a = (q, q ) в силу условия теоремы получаем, что обязательно существует такой конечный момент времени (, для которого d (/)/Л < О (здесь ( ) — значение энергии в движении Р ). Поэтому Е (t) а Е . Следовательно, значения энергии в движениях Р и в движении Р в момент времени t отличаются на конечную величину Е — Е ), несмотря на то, что начальные точки (<7 qs) и q, q ) этих движений сколь угодно близки, а это противоречит теореме о непрерывной зависимости решений дифференциальных уравнений от начальных данных. Уравнения же Лагранжа всегда алгебраически разрешимы относительно старших производных, и предполагается, что для них теорема эта верна. Мы пришли к противоречию, показывающему, что предположение >0 ошибочно. Теорема доказана.  [c.232]


Выведем для непрерывной системы дифференциальное уравнение переноса любой экстенсивной величины (обобщенной координаты), которую для краткости будем называть субстанцией. В качестве последней может быть масса, энергия, энтропия и т. п. Перенос любой субстанции происходит как кондуктивным, так и конвективным путями, имеющими разную физическую природу. Кондуктивный перенос осуществляется за счет хаотического молекулярного движения. Конвективный перенос происходит за счет макроскопического движения среды. Среднюю линейную скорость движения среды можно определить следующим образом  [c.205]

Автоколебательными называют автономные системы, в которых могут происходить периодические колебания, причем потери механической энергии непрерывно пополняются притоком энергии из источника, не обладающего собственными колебательными свойствами поступление энергии из источника управляется самим движением системы, а период и размах колебаний не зависят (в широких диапазонах) от начальных условий. Такие колебания называют установившимися (стационарными) автоколебаниями, а процесс постепенного приближения к установившимся автоколебаниям, возникающий после произвольного начального возмущения системы, — переходным процессом. Если дифференциальное уравнение движения системы можно представить в виде (2), то при относигельной малости нелинейной части обобщенной силы установившиеся автоколебания приближенно описываются зависимостью  [c.22]

Назначение этого параграфа связано с анализом дискретных схем интегрирования уравнений движения (дискретных моделей). Вопросы, которые здесь обсуждаются, связаны с первую очередь с вопросами механики. При переходе к описанию уравнений движения в конечных разностях законы сохранения могут нарушаться. В связи с этим обсуждаются способы формирования численных схем, которые не приводят к нарушению законов сохранения. По существу речь идет о методах построения таких дискретных моделей, которые содержат в себе законы сохранения исходной непрерывной модели законы сохранения полной энергии, импульса, фазового объема и т. д. Необходимо заметить, что анализ этих вопросов имеет большое значение для механики. Это связано с тем, что предельные теоремы о равномерной сходимости ломаных Эйлера к решению дифференциальных уравнений движения имеют чисто теоретическое значение, так как при использовании ЭВМ этого предельного перехода не производится, а в качестве приближенного решения рассматривается соответствующая ломаная с достаточно малым, но не равным нулю шагом интегрирования И. Одним из возможных методов получения дискретных моделей служит вариационный принцип  [c.290]


Дифференциальное уравнение в частных производных (3.2) допускает однозначное конечное и непрерывное решение г ), вообще говоря, не для любого значения к, а только для некоторых. А это означает, что устойчивость действительных движений системы может иметь место лишь для значений постоянной к интеграла энергии, совпадающих с собственными значениями постоянной к уравнения (3.2). Для свободной материальной точки при определенных условиях уравнение (3.2) принимает вид уравнения Шредингера  [c.15]

Изучение распространения звука в текучих средах, т. е. в жидкостях и газах, начнем с классической гидродинамики. Как известно, в гидродинамике предполагается, что покоящаяся текучая среда является однородной, изотропной, вязкой, теплопроводной, химически инертной. Любую проблему движения в рамках гидродинамики можно рассмотреть с помощью системы четырех дифференциальных уравнений, которые выражают закон Ньютона, уравнение состояния текучей среды, закон сохранения массы (уравнение непрерывности) и закон сохранения энергии в термодинамическом процессе движения среды.  [c.166]

Чтобы дифференциальные уравнения движения (2.7) и энергии (2.9), или притока тепла (2.10), составили замкнутую систему, способную описывать непрерывные движения сплошной среды, необходима конкретизация свойств среды и, в частности.  [c.122]

Исследования систем со многими степенями свободы всегда вызывали большой интерес. Причиной этого является, с одной стороны, желание понять поведение непрерывных систем, описываемых нелинейными дифференциальными уравнениями в частных производных, а с другой — связь со статистической механикой. Геометрия многомерных резонансов рассматривалась в п. 6.1а, а также в 6.3 (более подробное описание можно найти в работе [70]). С точки зрения резонансной структуры вопрос о поведении системы с большим числом степеней свободы сводится к вопросу о том, возрастает ли плотность основных резонансов быстрее, чем уменьшается их ширина, по мере распределения энергии по многим степеням свободы. Если это действительно так, то при N - оо следует ожидать перекрытия резонансов и сильной стохастичности движения.  [c.404]

Соотношения на фронте сильного разрыва. Известно, что при движении газа могут образовываться поверхности, при переходе через которые газодинамические функции терпят разрыв — возникают так называемые ударные волны (сильный разрыв). Уравнения газовой динамики, записанные в дифференциальной форме, имеют смысл в областях непрерывного течения. В общем случае уравнения газовой динамики нужно рассматривать в интегральной форме, например вида (1.7)—(1.9). Рассматривая уравнения (1.7)—(1.9) в окрестности поверхности разрыва, можно получить алгебраические соотношения, выражающие законы сохранения массы, импульса и энергии, которые должны выполняться при переходе через сильный разрыв.  [c.17]

Дифференциальные уравнения движения не только допускают интегральный инвариант (71), но и являются единственными дифференциальными уравнениями, обладающими этим свойством. Поэтому в основу механики можно положить следующий принцип — принцип сохранения количества движения и энергии Движения материальной системы (с вполне голоном-ными связями), находящейся под действием сил, имеющих силовую функцию, управляются дифференциальными уравнениями первого порядка, связывающими время, параметры положения и параметры скоростей и эти дифференциальные уравнения характеризуются тем свойством, что интеграл тензора количество движения —энергия , распространенный на любую непрерывную, линейную, замкнутую последовательность состояний системы, не меняет значения при перемещении этих состояний каким-либо способом вдоль соответственных траекторий ).  [c.845]


Физические модели вещества можно разделить на две группы в зависимости от того, на каком уровне (микро- или макроскопическом) рассматриваются его свойства. Как правило, макромодели предназначены для описания поведения тел, размеры которых не соизмеримы с размерами микрочастиц. Свойства вещества в таких моделях определяются термодинамическими величинами, характеризующими средние свойства достаточно представительного ансамбля микрочастиц. В основе макромоделей лежит гипотеза о непрерывном изменении характеристик вещества в пространстве х, I, позволяющая записать законы сохранения массы, количества движения и энергии в виде дифференциальных уравнений в частных производных. Наличие разрывов в параметрах не противоречит гипотезе сплопшости, ибо в случае разрыва законы сохранения остаются справедливыми, принимая вид условий на разрыве. Именно к этой группе моделей относятся модели механики сплошной среди.  [c.7]

В гл. 3 рри выводе системы дифференциальных уравнений (3.28) предполагалось, что термодинамические и кинематические величины, характеризующие течение вещества, непрерывны вместе со своими первыми производными. Рассмотрим теперь течения, когда в распределении термодинамических и кинематических величин возникают разрывы. Разрывы величин, характеризующих течение, могут быть сильными, контактными или произвольными. Разрыв, на поверхности которого все величины изменяются скачком и который перемещается по веществу с некоторой скоростью, называется сильным или ударным. В предельном случае, когда эта скорость равна нулю, сильный разрыв превращается в контактный. Иными словами, контактный разрыв перемещается в пространстве вместе с веществом, т. е. со скоростью вещества. На контактном разрыве часть величин, ха,рактер изующих течение среды, разрывна, а часть непрерывна. Разрывы первых производных величин, характеризующих течение вещества, называются слабыми. На сильных, слабых и контактных разрывах выполняются законы сохранения массы, количества движения и энергии. Разрывы, на которых законы сохранения не вьшолняются, называются произвольными.  [c.99]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Такие уравнения полезны как в методах решения задач, так и в случаях, когда внутри или на границе области движения некоторые функции и функционалы разрывны. Уравнения получаются интегрированием по I соответствующих интегральных (по объему) выражений рассмотренных выше законов сохранения массы, импульсов и энергии либо интегрированием по и по К их дифференциальных выражений Но в принципе более правильно считать такие разностно-интегральные уравнения МСС аксиомами, непосредственно согласованными с основным постулатом, определяющим функционалы, так как, по существу, в них допускается возможность не непрерывных (по х, () решений, т. е. решений замкнутой системы в обоби енных функциях.  [c.166]

Говоря о статистическом характере теории турбулентности, ее часто сравнивают с кинетической теорией газов, изучающей системы из очень большого числа взаимодействующих между собой молекул. Это сравнение оправдано в том смысле, что в обеих указанных теориях точное описание эволюции исследуемой механической системы теоретически безнадежно, а практически было бы бесплодным. Однако надо иметь в виду, что между статистической механикой молекулярных ансамблей, изучавшейся Гибсом, Больцманом и другими исследователями, и статистической гидромеханикой вязкой жидкости существует и большое принципиальное различие. Оно связано, в первую очередь, с тем, что суммарная кинетическая энергия совокупности движущихся молекул не меняется во времени (во всяком случае при простейших предположениях о молекулярных взаимодействиях, обычно принимаемых в кинетической теории газов), тогда как при движении реальной жидкости ее кинетическая энергия всегда диссипируется в теплоту под действием вязкости. Менее существенным, но также не безразличным оказывается то, что молекулярные ансамбли дискретны по своей природе и их временная эволюция описывается системами обыкновенных дифференциальных уравнений, в то время как в гидромеханике речь идет о движениях непрерывной среды, описываемых уравнениями в частных производных. В результате аналогия с кинетической теорией газов сравнительно мало помогает построению теории турбулентности, облегчая лишь самое первоначальное понимание идеи о статистическом подходе к физической теории.  [c.9]



Смотреть страницы где упоминается термин Дифференциальные уравнения непрерывности, движения и энергии : [c.7]    [c.67]    [c.203]   
Смотреть главы в:

Прикладная гидродинамика газожидкостных смесей  -> Дифференциальные уравнения непрерывности, движения и энергии



ПОИСК



Движение дифференциальное

Движение непрерывное

Дифференциальное уравнение движения

Дифференциальное уравнение энерги

Дифференциальное уравнение энергии

Дифференциальное уравнение, движени

Уравнение непрерывности

Уравнение энергии



© 2025 Mash-xxl.info Реклама на сайте