Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллические решетки ионные Энергия

Крановые электродвигатели — см. Асинхронные двигатели с короткозамкнутым ротором для повторно кратковременного режима работы серии МТК Крепление оптических деталей 238 Кривые намагничивания 334 Кристаллические решетки ионные — Энергия 294  [c.542]

Кристаллические решетки ионные — Энергия 2 — 294  [c.433]

Если энергия гидратации не достаточна для разрыва связей между ион-атомами и электронами, т.е. энергия металлической связи в кристаллической решетке превышает энергию гидратации, то на поверхности металла могут разряжаться катионы из раствора. Поверхность металла при этом приобретает положительные заряды, которые с анионами раствора также образуют двойной электрический слой (рис. 4. , б).  [c.39]


Как и в молекуле, где ядра не успевают сместиться из положения равновесия во время электронного перехода (принцип Франка — Кондона), в кристаллической решетке ионы во время электронного перехода также не успевают сместиться из положения равновесия. В случае изолированной молекулы этот факт быстрого перехода электрона означает, что должна учитываться также энергия колебания системы, зависящая от взаимного положения потенциальных кривых в конфигурационных координатах нормального и возбужденного состояний молекулы. В ионном кристалле фотоэлектрон связан не с одним только узлом, а со всей решеткой в целом. Поэтому на электронный переход реагируют не только непосредственно участвующие партнеры, как в случае молекулы, но все узлы решетки выводятся из электростатического равновесия, в котором находились до электронного перехода. В связи с этим энергия поглощенного кванта затрачивается не только на первичный электронный переход, но и на последующие вслед за переходом вторичные явления, связанные с переходом решетки в новое равновесное состояние.  [c.121]

Исходное расположение атомов в данной кристаллической решетке определяется условиями равновесия межатомных сил притяжения и отталкивания. Для упрощенного анализа примем, что потенциальная энергия взаимодействия атомов состоит из двух составляющих энергии сил отталкивания, увеличивающихся при уменьшении расстояния между центрами ионов при сжатии кристаллической решетки, и энергии сил притяжения, увеличивающихся до некоторого максимального значения при увеличении расстояния между центрами ионов и затем уменьшающихся до нуля при дальнейшем увеличении расстояния между центрами ионов до бесконечности. Изменение потенциала в зависимости от межатомного расстояния определяется как изменение суммы потенциалов сил притяжения и сил отталкивания.  [c.41]

Необходимый тепловой контакт между термометром и телом, температуру которого желательно измерить, не обязательно должен быть механическим контактом. Уже отмечалось, что передача излучения от одного тела к другому позволяет осуществить идеально адекватные способы теплового контакта. Кроме того, хороший физический контакт не обязательно подразумевает хороший тепловой контакт. При очень низких температурах возможно существование магнитных спиновых систем, которые составляют единое целое с кристаллической решеткой, но имеют с ней очень плохой тепловой контакт. На этом факте основаны способы достижения предельно низких температур. С другой стороны, при очень высоких температурах (в плазме) распределение энергии между электронами может существенно отличаться от распределения энергии между ионами. Поэтому можно говорить, что электронная температура отличается от ионной температуры .  [c.23]


С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]

Ионные растворы, образующиеся при плавлении ионных кристаллов или кристаллов с ковалентной полярной связью, обладают громадной концентрацией, так как при плавлении твердых тел объем расплава увеличивается только на 6—8%. Расстояния между ионами в расплаве будут близки к расстояниям между ними в кристалле, а следовательно, энергия взаимодействия между ними будет приближаться к их энергии в кристаллической решетке.  [c.289]

Атомы (ионы) располагаются на таком расстоянии один от другого, при котором энергия взаимодействия минимальна. Этому состоянию соответствует равновесное состояние a . Сближение атомов (ионов) на расстояние, меньшее а , или удаление их на расстояние, большее do, осуществимо лишь при совершении определенной работы против сил отталкивания и притяжения. Поэтому в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов. Ее следует представлять как мысленно проведенные в пространстве в направлении трех осей координат прямые линии, соединяющие ближайшие атомы и проходящие через их центры, около которых они совершают колебательные движения. Проведенные линии образуют объемные фигуры правильной геометрической формы. Таким образом, элементарная кристаллическая ячейка - это наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме.  [c.274]

Так как кинетическая энергия электронов, приобретаемая под действием электрического поля, передается при столкновении ионами кристаллической решетки, то при прохождении постоянного тока проводник нагревается.  [c.151]

Атомы (ионы) располагаются на таком расстоянии один от другого, при котором энергия взаимодействия минимальна. Этому состоянию соответствует равновесное состояние а . Сближение атомов (ионов) на расстояние, меньшее йГо, или удаление их на расстояние, большее <Зо, осуществимо лишь при совершении определенной работы против сил отталкивания и притяжения. Поэто.му в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов.  [c.38]

Снова, как и в случае молекулярных кристаллов, при расчете энергии сцепления ионных кристаллов будем исходить из обычных классических представлений, считая, что ионы находятся в узлах кристаллической решетки (положениях равновесия), их кинетическая энергия пренебрежимо мала и силы, действующие между ионами, являются центральными. Последнее утверждение для ионных кристаллов вполне справедливо, так как потенциаль-  [c.71]


Для грубой оценки энергии сцепления щелочных металлов обычно пользуются ионной моделью. Согласно этой модели, положительно заряженные ионы, которые считают точечными, располагаются в узлах кристаллической решетки, а коллективизированные электроны равномерно распределены между ионами. Энергия сцепления металлического кристалла в такой модели может быть рассчитана с помощью методов, используемых при расчете энергии сцепления ионных кристаллов.  [c.83]

Магнитоакустические эффекты в ферритах возникают в результате взаимодействия спинов магнитных ионов и упругих колебаний кристаллической решетки, т. е. в результате тех же взаимодействий, которые определяют магнитострикционные эффекты. Выражение для упругой и магнитоупругой энергий можно записать в виде  [c.708]

Кристаллическую решетку образуют воображаемые линии и плоскости, проходящие через точки пространства, в которых располагаются ионы металла. Более правильно эти точки определить как центры наиболее вероятного расположения ионов, так как те не остаются неподвижными, а колеблются около этих центров. Последние обычно называют узлами кристаллической решетки. Наиболее распространенными типами таких решеток металлов являются кубическая объемноцентрированная (рис. 115, а), кубическая гранецентрированная (рис. 115, б) и гексагональная плотно-упакованная (рис. 115, в). В них атомы находятся в устойчивом равновесии и обладают минимальной потенциальной энергией.  [c.113]

В качестве примера возможного механизма электрического пробоя ниже приведены основные положения теоретических работ А. А. Воробьева и Е. К. Завадовской. Изучая пробой щелочно-галогенных кристаллов, эти ученые обнаружили прямую пропорциональность между электрической прочностью и энергией решетки. Под энергией кристаллической решетки понимают количество энергии, необходимое для полного разрушения одного моля данного вещества, т. е. разделения ее на ионы и рассеяния их на бесконечно большие расстояния.  [c.78]

Ионная электропроводность, как и у жидких диэлектриков, сопровождается переносом вещества иа электроды. У твердых диэлектриков с электронной проводимостью этого переноса вещества не наблюдается. В твердых кристаллических телах, при низких температурах в первую очередь передвигаются слабо закрепленные ионы, ионы примесей. При высоких температурах движутся основные ионы кристаллической решетки. Энергия активации носителей тока определяет механизм электропроводности в твердых диэлектриках. Удельную проводимость в твердых диэлектриках можно определить так же, как у жидких, пользуясь уравнением  [c.20]

Появление точечного дефекта в идеальном кристалле изменяет его энергию. Это изменение, т. е. разность энергий кристалла с дефектом и кристалла без дефекта, называется энергией В/ образования дефекта. Дефект изменяет энергию как ионной подсистемы металла (кристаллической решетки), так и электронной подсистемы. Теоретический расчет энергии образования дефекта представляет собой весьма трудную задачу, так как дол кен учитывать большое число имеющих разную природу слагаемых в энергии. Для их определения применяются различные методы и используются разнообразные модели.  [c.91]

В. Мотт [44] полагал, что теплота хемосорбции облегчает обменные процессы на поверхности металла на начальной стадии взаимодействия с кислородом. Перестройка поверхности (обмен местами катионов металла и анионов кислорода) происходит тогда, когда энергия, обусловленная силами зеркального изображения кислородного иона больше энергии связи катиона в кристаллической решетке металла.  [c.38]

Действие облучения на материалы, как правило, приводит к значительным изменениям свойств этих материалов, к изменениям физических и химических процессов, происходящих в веществе, а также к новым качественным состояниям вещества. Изменения эти связаны не только с дозой облучения, но и с целым рядом ускоряющих или замедляющих факторов. Следовательно, чтобы характеризовать условия облучения, необходимо кратко рассмотреть общие вопросы, связанные с воздействием излучения на твердые тела. Взаимодействие излучения с твердыми телами приводит к структурным нарушениям кристаллической решетки, в результате физико-механические свойства вещества изменяются. В зависимости от энергии и типа излучения в материалах наблюдаются следующие явления иони-  [c.86]

По современным научным воззрениям не только органические, но и неорганические неметаллические материалы имеют полимерное строение. Ковалентные, ионные и дисперсионные химические связи в полимерных материалах исключают наличие в объеме тела подвижного электронного газа, образующего металлическую связь и легко переносящего тепловую и электрическую энергию. Поэтому одним из основных отличий неметаллических материалов от металлов, сплавов и графита имеющего также металлическую связь между плоскостями кристаллической решетки) являются их тепло- и электроизоляционные свойства.  [c.7]

ЭНЕРГИЯ ИОННОЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ  [c.294]

Если энергия гидратации недостаточна для раэрыва связи мехду ион-атомами и электронами, т.е. энергия связи в кристаллической решетке превышает энергии гидратации, то на поверхности металла могут разряжаться катионы иа раствора. Поверхность металла при этом приобретает положительные варяды, которые с анионами раствора также обравуют двойной электрический слой (рис. 8,6).  [c.24]

Закись меди. Полупроводник с кристаллической решеткой ионного типа uaO получают в виде слоя на поверхности медных пластин их окислением при высокой температуре. Закись меди имеет малиновокрасный цвет и является полупроводником с дырочной проводимостью кристаллическая решетка — кубическая. Температура плавления за-, киси меди 1232° С, энергия запрещенной зоны =..1,56 эв, подвижность дырок невелика -= 80 см 1в-сек. Проводимость закиси меди, зависит от условий технологии, а также наличия примесей в среднем при нормальных условиях 7 = 10 /ом-сл1.  [c.187]


Кристаллическая решетка характеризуется энергией образования кристалла из газообразных ионов, атомов иЛи других частиц, находящихся в узлах решетки. От величины энергии рещетки зависят, например, температура плавления, модуль упругости, прочность, твердость и т.п. К характеристикам решетки относятся также следующие величины  [c.19]

Указанные условия реализуются различными способами сварки путем энергетического воздействия на материал в зоне сварки. Энергия вводится в виде теплоты, уиругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия. В результате поверхностные атомы металлов и кристаллических неметаллических материалов образуют общие для соединяемых заготовок кристаллические решетки, а на поверхности пластмасс происходит объединение частей молекулярных цепей.  [c.182]

Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме (7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах  [c.193]

Изучение люминесценции рубина позволило составить следующее схематическое представление о механизме ее возникновения и об энергетических уровнях ионов хрома, введенных в кристаллическую решетку кристаллов корунда. На рис. 40.5 широкими полосами показаны энергетические уровни ионов хрома и Переходы на них из основного состояния соответствуют упомянутым выше широким полосам поглощения кристалла рубина в видимой области спектра. Процессы поглощения энергии света ионами хрома си.мволически представлены стрелками, направленными от нормального нижнего энергетического уровня ионов Е к верхним уровням 3, 3. В результате поглощения света ионы хрома переходят с нижнего уровня на верхние. Длительность существования т этих возбужденных состояний ионов хрома мала и составляет примерно 10 с.  [c.785]

Решеточное поглощение наблюдают в ионных кристаллах или в кристаллах, в которых связь между атомами в какой-то степени является ионной (например, в бинарных полупроводниках InSb, GaAs и т. д.). Такие кристаллы можно рассматривать как набор электрических диполей. Эти диполи могут поглощать энергию электромагнитного (светового) излучения. Наиболее сильным поглощение будет тогда, когда частота излучения равна частоте собственных колебаний диполей. Поглощение света, связанное с возбуждением колебаний кристаллической решетки, называют решеточным. Решеточное поглощение наблюдают в далекой инфракрасной области спектра.  [c.312]

Модель свободных электронов. Основываясь на модели свободных электронов, можно объяснить целый ряд важных физических свойств металлов. Согласно этой модели наиболее слабо связанные (валентные) электроны составляющих металл атомов могут довольно свободно перемещаться в О бъе.ме кристаллической решетки. Указанные валентные электроны становятся носителями электрического тока в металле, отсюда и их название — электроны гараводимости. В приближении свободных электронов можно пренебречь силами взаимодействия между 1валентными электронами и ионными остовами. Предполагается, что полную энергию электронов проводимости можно считать равной их кинетической энергии, а потенциальной можно пренебречь.  [c.103]

Ранее мы выяснили, что конденсация атомов (или ионов и электронов) приводит к понижению энергии системы и является вследствие этого энергетически выгодным процессом. Поэтому в невозбужденном состоянии при предельно низких температурах все тела находятся в конденсированном состоянии, причем, за исключением гелия,—это твердые кристаллические тела. Гелий при нормальном давлении — жидкость, но при давлении в 30 кбар он также становится кристаллом. Существуют различные подходы к объяснению самого факта существования в твердом теле периодического расположения атомов (трансляционной симметрии). Так, согласно теореме Шенфлиса, всякая дискретная группа движений с конечной фундаментальной областью (т. е. элементарной ячейкой) имеет трехмерную подгруппу параллельных переносов, т. е. решетку [22]. Можно объяснять необходимость существования кристаллической решетки, а в конечном счете и вообще симметричного расположения атомов, исходя из третьего закона термодинамики. Согласно этому закону, при приближении к абсолютному нулю температуры энтропия системы должна стремиться к нулю. Но энтропия системы пропорциональна логарифму числа возможных комбинаций взаимного расположения составных частей системы. Очевидно, любое не строго правильное расположение атомов влечет за собой большое число равновозможных конфигураций атомов и приводит к относительно большой энтропии, и только строго закономерное расположение атомов может быть единственным. Поэтому равная нулю энтропия совместима только со строго повторяющимся взаимным расположением составных частей тела [1]. Иногда симметричность расположения атомов в кристалле объясняют исходя из однородности среды.  [c.124]

Эффект синергизма достигается при совместном введении в электролит производных пиридина или анилина, с галогенид- ионами. По повышению защитного действия галогенид-ионы можно расположить в ряд J", Вг", СГ, т.е. в последовательности, обратной изменению их энергии гидратации, Дж/моль 353 для СГ 319 для Вг и 268 для J , так как более гидратированные поверхностные комплексы с галоидом, например, с ионом хлора, легко теряют связь с атомами кристаллической решетки металла и переходят в раствор. Анионы с меньшей энергией гидратации, хемосорбируясь на поверхности металла, теряют гидратированную воду и приобретают свойства защитной пленки. Резко возрастает защитный эффект от введения -аминов и некоторых других ингибиторов катионного типа при наличии в кислой среде сероводорода, тогда как в аналогичной среде без сероводорода эти же соединения являются слабыми ингибиторами коррозии. В таких случаях адсорбированные на поверхности железа анионы СГ, Вг", J", HS выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа.  [c.144]


Появление точечного дефекта в кристалле приводит к геометрическим искажениям кристаллической решетки в результате смещений окружающих дефект ионов металла. Возникновепие этих смещений связано с тем, что дефект вызывает изменение состояния как ионной, так и электронной подсистем металла. Новое состояние соответствует новому условию равновесия всей системы — минимуму энергии кристалла с дефектом. Этому условию должно удовлетворять узко новое размещение ионов и измененное распределение электронов проводимости. Таким образом, смещение ионов происходит в результате релаксации системы к новому равновесному состоянию. При строгом решении задача определения этих смещений оказывается чрезвычайно слоншой. Поэтому для ее решения был предложен ряд приближенных методов.  [c.70]

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводника, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца. Таким образом, электронная теория металлов дала возможность аналити-  [c.187]

Гидрол из в паровой фазе протекает при повышении (с ростом тем1пературы и плотности абсолютного значения) ионного произведения воды, (понижении (с ростом температуры) энергии кристаллической решетки соли и уменьшении (с ростом темлературы) констант диссоциации иродуктов гидролиза (НС1, NaOH и т. д.). Непрерывный отвод в условиях генерации шара газообразных продуктов гидролиза, естественно, благоприятствует более глубокому протеканию процесса.  [c.94]


Смотреть страницы где упоминается термин Кристаллические решетки ионные Энергия : [c.389]    [c.151]    [c.785]    [c.98]    [c.383]    [c.7]    [c.333]    [c.67]    [c.172]    [c.109]    [c.45]    [c.22]   
Справочник машиностроителя Том 2 (1955) -- [ c.294 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.294 ]



ПОИСК



Иониты

Ионная решетка

Ионов

Кристаллическая решетка

Кристаллические

Кристаллические решетки ионные Энергия чистых металлов

По ионная

Энергия решетки



© 2025 Mash-xxl.info Реклама на сайте