Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные соотношения теории поля

Интегральные соотношения теории поля.  [c.5]

До настоящего времени не существует строгого математического решения проблемы переноса в турбулентном пограничном с.иое, хотя литература по этому вопросу весьма обширна i. Природа пристенной неизотропной турбулентности не выяснена, и это не дает возможности составить замкнутое аналитическое описание процесса молярного переноса импульса, энергии и массы. Методы расчета либо основаны на весьма приближенных и упрощенных моделях явления, представляющих трактовку идей Прандтля и Кармана о длине пути смешения, ламинарном и турбулентном подслоях и т. п., либо базируются на интегральных соотношениях импульса энергии и диффузии с привлечением недостающих зависимостей из эксперимента. Такие теории называются полу-эмпирическими, так как эксперименту в. них отводится очень важная роль.  [c.224]


Ряд задач математической физики (в том числе рассмотренные выше сопряженные задачи, некоторые другие задачи теории переноса, дисперсионные соотношения квантовой теории поля) сводится к решению интегральных уравнений вида  [c.90]

Детально разработанная фурье-оптика дифрагирующих световых пучков базируется на простых и наглядных идеях, сформулированных, по существу, еще в прошлом веке. Теория дифракции Фраунгофера основывается на интегральном соотношении, показывающем, что угловой спектр поля, регистрируемый в дальнем поле или в фокальной плоскости линзы, определяется преобразованием Фурье от распределения комплексной амплитуды поля на входной апертуре. Многие практические успехи фурье-оптики основаны на продемонстрированных Аббе возможностях влиять на изображение, изменяя амплитуды и фазы спектральных компонент в фокальной плоскости. Классические примеры этой техники — метод темного поля и метод фазового контраста.  [c.33]

Основное значение в этих методах приобретает прежде всего выбор семейств профилей скорости, температур, или концентраций, которые-могли бы быть использованы для подстановки в интегральные соотношения вместо действительных, остающихся неизвестными. При современном состоянии теории уже сам этот выбор представляет трудную задачу. Так, для задания поля скоростей широко пользуются соображениями подобия и размерности, выбирают для профилей скорости в сечениях пограничного слоя одночленные степенные формулы с показателем степени и коэффициентом, зависящими от параметра, равного отношению величин толщины вытеснения к толщине потери импульса, и аналогичные по типу формулы для коэффициента сопротивления. Иногда для той же цели используют логарифмическую формулу распределения скоростей и логарифмический закон сопротивления. Существуют методы, основанные на компоновке профиля скорости из трех частей внутренней (пристеночной), не зависящей от наличия перепада давления вне слоя, переходной и внешней, выбранных путем модификации профилей скоростей в аэродинамическом следе за телом, а иногда только из внутренней и внешней.  [c.537]

Это интегральное уравнение определяет распределение давления по области соприкосновения. Его решение может быть найдено из аналогии со следующими известными из теории потенциала соотношениями. На мысль воспользоваться этой аналогией наводит тот факт, что, во-первых, интеграл, стоящий в левой стороне уравнения (9,7),—типа обычных в теории потенциала интегралов, определяющих потенциал, создаваемый некоторым распределением зарядов, и, во-вторых, что потенциал поля внутри равномерно заряженного эллипсоида есть квадратичная функция координат.  [c.46]


Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны вершины трещины, деформацию у вершины трещины, угол раскрытия, малую область разрушаемого материала с реакцией материала и т.п.), то все они дадут один и тот же конечный результат (после их применения) именно в силу локальности анализируемой области [39]. Подобные критерии составляют предмет линейной механики разрушения. Вообще, термин линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной (линеаризованной) теории упругости. Наоборот, привлечение к анализу свойств пластичности материала приводит к потерям однозначных оценок, сопряженных с большим разнообразием моделей предельного состояния и разрушения. Критерии, построенные на этой основе, отвечают критериальным величинам интегрального толка, необратимо накапливающимся в ближней и дальней окрестностях трещины. В силу большого разнообразия возможных эффектов, в сравнении с критериями линейной механики разрушения, критерии нелинейной механики разрушения показывают большой разброс результатов не только между собой, но и с экспериментом. С этой точки зрения, имея в виду прикладные расчеты сложных технических систем, целесообразнее и надежнее (и спокойнее для конструктора) критериальные соотношения, основанные на модельных представлениях, заменить прямыми натурными или полу-натурными экспериментами.  [c.74]

Для оценки точности приближенной теории зонда используем известное точное решение [9] об электростатическом поле, создаваемом двумя проводящими сферами с радиусами и а, расстояние между центрами которых равно Н (вне сфер полагается, что г = 1). Обозначим потенциал и поверхностный заряд первой сферы (р1 и Ql, а второй -Фи Qw Эти интегральные характеристики связаны соотношениями  [c.721]

Соотношение (6.7) представляет собой хорошо известный в физике закон Стефана — Больцмана. Но это соотношение, как следует из равенства (6.5), в общем случае не может быть использовано в законе Кирхгофа. Отсюда становится очевидным факт отсутствия в теории радиационного поля понятия интегрального коэффициента поглощения (см. примечание на стр. 645). Однако в практических приложениях и качественных исследованиях часто используется модель так называемой серой среды, коэффициент поглощения которой не зависит от частоты, т. е. используется некоторый усредненный по частотам коэффициент поглощения а.  [c.659]

Основанный на идее Больцмана подход получил математическое оформление в работах Вольтерра [52-54] по теории интегральных и интегро-дифференциальных уравнений. Собственно говоря, как соотношения вида (3.57), так и теория интегральных уравнений являются широко применимыми в науке и выходят далеко за рамки механики. О наследственных свойствах ( памяти ) геологических сред, проявляющихся в различных процессах, связанных с проявлением и взаимодействием различных физических полей, можно прочесть, например, в [55].  [c.152]

ДИСПЕРСИОННЫЕ СООТНОШЕНИЯ — интегральные представле1п1я ф-ций отклика, описывающих реакцию равновесной стационарной физ. системы на внеш. воздействия. Д. с. отражают аналитич. свойства ф-ций отклика в комплексной плоскости частоты (энергии), фиксируют их частотную зависимость и приводят к ряду ограничивающих их неравенств, правил сумм и т. п. В более у шом смысле Д- с. связывают рефракцию распространяющихся в системе волн с их поглощением сюда же относятся Д с. для процессов рассеяния в квантовой механике и квантовой теории поля. Д. с. имеют универсальный вид, не зависящий от конкретной динамики системы, и используются во мн. разделах физики в динамике диспергирующих сред (отсюда назв. Д. с.), в физике элементарных частиц и др.  [c.642]

В терминах электронной теории можно следующим образом охарактеризовать механизм процесса. Электрическое поле падающей волны раскачивает заряженные частицы (электроны), и возникает рассеянное излучение, которое в грубом приближении можно описать полученными ранее соотношениями для гармонического осциллятора, излучающего под действием вынуждающей силы (см. 1.5). В частности, сразу понятно, почему наиболее интенсивно рассеивается коротковолновое излучение. Известно, что интегральная интенсивность излучения диполя пропорциональна четвертой степени частоты (ш lA ). Следовательно, голубой свет рассеивается значительно сильнее красного (Хкр/ гол = 1,6). Индикатриса рассеяния похожа на распределение потока электромагнитной энергии в пространстве (см. 1.5), полученное на основе очевидного положения об отсутствии излучения в направлении движения осциллирующего электрона.  [c.353]


Для составления моментных соотношений в задачах стохастической устойчивости выше были использованы уравнения теории марковских процессов, справедливые при дробно-рациональных спектральных плотностях. Спектры реальных воздействий во многих случаях имеют более сложную структуру. Это относится, например, к пространственно-временным случайным функциям, описывающим атмосферную турбулентность, волнение морской поверхности [19] и т. д. При произвольном виде спектральных плотностей анализ моментных соотношений может быть выполнен при помощи метода интегральных спектральных представлений. Эффективность этого метода обусловлена стохастической орто-гональностью стационарных случайных процессов и однородных полей. Спектры стационарных процессов удовлетворяют соотно-  [c.151]

Решения эТих уравнений аналогичны решениям уравнений (7.3а), которые обсуждались ранее в 7.1. Как уже отмечалось, эти ре пения соответствуют соотношение , имеющим более высокий, чем это требуется в соответствии с физическим смыслом задачи, порядок, но, несмотря на это, нельзя рассчитывать, что с помощью этих решений можно удовлетворить граничным условиям более точным, чем интегральные. Для удовлетворения более полных или точных граничных условий требуется произвести наложение дополнительных полей локальных. напряжений, которые получаются из рассмотрения уравнений трехмерной задачи теории упругости. Методы, рассматривавшиеся в 5.5 для толстых пластин, можно, как уже сцмёчалось ранее, применять, получая прекрасную аппроксимацию для толстостенных цилиндрических и. инйх оболочек, если пренебречь кривизной (как об этом говорилось в 7.1, такой подход особенно удобен при гра-36 .  [c.555]

В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]


Смотреть страницы где упоминается термин Интегральные соотношения теории поля : [c.647]    [c.643]    [c.176]    [c.6]    [c.66]    [c.66]    [c.343]    [c.252]    [c.2]    [c.11]   
Смотреть главы в:

Механика жидкости и газа Часть 1  -> Интегральные соотношения теории поля



ПОИСК



Соотношение интегральное

Теория поля



© 2025 Mash-xxl.info Реклама на сайте