Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения сохранения энергии и баланса энтропии

И. УРАВНЕНИЯ СОХРАНЕНИЯ ЭНЕРГИИ И БАЛАНСА ЭНТРОПИИ  [c.124]

II] уравнения сохранения энергии и баланса энтропии 129  [c.129]

Уравнения сохранения энергии и баланса энтропии 131  [c.131]

Используя уравнения сохранения энергии и баланса по числу молей, можно вывести уравнение баланса энтропии. Последнее содержит явные выражения для потока энтропии 15 и производства энтропии сг, которое может быть связано с такими необратимыми процессами, как теплопроводность, диффузия и химические реакции. Формальное уравнение баланса энтропии имеет вид  [c.330]


В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]

Положения (2.1) - (2.10), отмеченные выше, составляют линейную феноменологическую теорию необратимых процессов Онзагера. К этому необходимо добавить, что совокупность законов сохранения энергии, массы и импульса и баланса энтропии вместе с линейными феноменологическими уравнениями, условиями, вносимыми соотношениями Онзагера и принципом Кюри, и эмпирическими уравнениями состояния можно считать полной в том смысле, что из нее следует полная система дифференциальных уравнений для переменных состояния среды.  [c.38]

В МСС важную роль имеет совместное следствие закона сохранения энергии и уравнения баланса энтропии частицы  [c.131]

Для определения с помощью основного уравнения (1.3) термодинамики неравновесной системы производства энтропии и изменения во времени всех других ее термодинамических функций к этому уравнению необходимо добавить уравнения баланса ряда величин (массы, внутренней энергии и др.), а также уравнения, связывающие потоки / этих величин с термодинамическими силами X,-. Найдем здесь уравнения баланса и законы сохранения различных величин.  [c.9]

Для малой окрестности физической точки (частицы) среды установлены дифференциальные и интегральные уравнения сохранения массы, импульса (уравнения движения), сохранения энергии, баланса энтропии (уравнение притока тепла), а также уравнения, связывающие тензор напряжения и вектор теплового потока с деформациями, температурой и немеханическими заданными параметрами. Эти соотношения в принципе определяются, и притом однозначно, непосредственно в -опытах для всех возможных в частице процессов поскольку все входящие в эту сис тему равенств параметры измеряются приборами и системе удовлетворяют, группа параметров, названная реакцией (г), однозначно определяется группой процесса (я). Следовательно, для малой частицы решение суи ествует r(t)—г n(x)). Поэтому перечисленная система уравнений в МСС называется замкнутой для всех внутренних точек области движения среды.  [c.157]


Эти лекции посвящены термодинамике неравновесных процессов в собственном смысле слова, т. е. макроскопической теории необратимых процессов ). Сначала мы рассмотрим законы сохранения массы, импульса и энергии ( 2) и закон энтропии далее обсудим уравнение баланса энтропии и возникновение энтропии ( 3). В 4 мы займемся феноменологическими законами и общими свойствами феноменологических коэффициентов, которые могут быть получены на основе принципа Кюри и теоремы Онсагера. В 5 и 6 будет рассмотрено приложение теории к ряду специальных случаев.  [c.146]

Основным законом макроскопической теории необратимых процессов является первый закон термодинамики, т. е. закон сохранения энергии. Мы воспользуемся локальной формулировкой этого закона, так как будем рассматривать непрерывные системы, т. е. системы, в которых физические величины являются непрерывными функциями пространственных координат и времени. Воспользуемся также локальной формулировкой макроскопических законов сохранения массы и импульса, поскольку локальные плотности массы и импульса могут зависеть от времени. Эти законы сохранения вместе с законом изменения энтропии являются основными уравнениями, позволяющими получить уравнение баланса энтропии.  [c.146]

Механика сплошной среды (МСС) — раздел теоретической физики, в котором изучаются макроскопические движения твердых, жидких и газообразных сред. В ней вводятся фундаментальное понятие материального континуума и полевые характеристические функции, 01феделяющие внутреннее состояние, движение и взаимодействие частиц среды, взаимодействия между различными контактирующими средами. Для этих функций устанавливаются конечные, дифференциальные и другие функциональные уравнения, представляющие физические свойства среды в виде, определяющих соотношений, и законы сохранения массы, импульса, энергии и баланса энтропии. Выясняются начальные и граничные условия, при которых все характеристические функции в средах могут быть найдены чисто математически аналитическими и числовыми методами.  [c.3]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]

Выбирая и (х, г) и 0 (х, г) в качестве первичных переменных, мы по существу используем так называемую аксиому причинности . По Эрингену 11967, стр. 145], движение материальных точек тела и их температуру следует рассматривать как самоочевидные наблюдаемые характеристики термомеханического поведения тела. Остальные величины, входящие в уравнения баланса масс, моментов, производства энергии и сохранения энергии (например напряжения, энтропия, тепловой поток и т. д.), являются причинами . .. Предполагается, конечно, что внешние воздействия, такие, как объемные силы, источники тепла и некоторые поверхностные усилия или перемещения, заданы заранее см. 14.  [c.219]

Метод, принятый в термодинамике неравновесных процессов, состоит прежде всего в том, что устанавливают различные законы сохранения микроскопической физики законы сохранения материи, импульса, момента импульса и энергии. В 2 этой статьи мы дадим формулы этих законов применительно к изотропным жидкостям, в которых имеют место тепло- и массоперенос и вязкое течение. В 4 и 5 рассмотрены эффекты, вызванные химическими реакциями, релаксационными процессами и действием внещних сил. С помощью законов сохранения описан закон энтропии Гиббса и введено уравнение баланса, которое содержит в себе как основной термин величину прироста энтропии. Выражение для прироста энтропии в этом случае является суммой членов, обусловливаемых теплопроводностью, диффузией, вязким течением и химическими реакциями ( 3—5). Каждый из этих членов состоит из произведения потока (например, потока тепла или диффузионного потока) и термодинамической силы (например, градиента температуры или градиента концентрации). Можно установить линейную зависимость (называемую феноменологическими уравнениями) между этими потоками и термодинамическими силами ( 6). Коэффициенты, появляющиеся в этих уравнениях, суть коэффициент теплопроводности, коэффициент диффузии и тому подобные. Между ними существует определенная зависимость как результат временной инвариантности (соотношение Онзагера) и возможности пространственной симметрии (принцип Кюри). Окончательно включением феноменологических уравнений в законы сохранения и законы энтропии а также с помощью приведенных ниже уравнений состояния ( 7) получают полную систему дифференциальных уравнений, описывающих поведение объекта.  [c.5]



Смотреть страницы где упоминается термин Уравнения сохранения энергии и баланса энтропии : [c.125]    [c.127]    [c.8]   
Смотреть главы в:

Механика сплошной среды  -> Уравнения сохранения энергии и баланса энтропии



ПОИСК



Баланс энергии

Сохранение

Сохранение энергии

Уравнение баланса энергии

Уравнение баланса энтропии

Уравнение для энтропии

Уравнение сохранения энергии

Уравнение энергии

Уравнения баланса

Уравнения сохранения

Энергия . Энтропия

Энтропия

Энтропия баланс

Энтропия сохранение



© 2025 Mash-xxl.info Реклама на сайте