Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы Ползучесть — Характеристики

При расчетах циклической и длительной циклической прочности на стадии проектирования и пуска атомных реакторов в соответствии с данными 3 используются характеристики механических свойств применяемых конструкционных материалов, гарантируемые соответствующими техническими ус.ловиями и стандартами. Этими характеристиками являются модули упругости E , пределы прочности од и текучести Оа,2, относительное сужение ф или фй, определяемые при кратковременных статических испытаниях, а также пределы длительной прочности а х и длительная пластичность ф (или 8 ), определяемые из опытов на длительную прочность и ползучесть. Дополнительными характеристиками материалов являются показатели степени кривой  [c.43]


Для повышения релаксационной стойкости соединений рекомендуется изготовлять болты (шпильки) и гайки из материалов с одинаковыми характеристиками ползучести.  [c.359]

Для сопоставления сопротивления ползучести различных материалов введена условная характеристика - предел ползучести.  [c.111]

При прогнозировании поведения в условиях длительной ползучести и характеристик разрыва при кратковременной ползучести с помощью применения параметра Ларсона — Миллера результаты теории хорошо согласуются с экспериментом для разнообразных материалов, включая некоторые пластики.  [c.438]

Применение новых композиционных материалов с регулируемыми характеристиками состояния возможно только при условии их детального исследования. Примером таких материалов могут служить армированные пластики, представляющие композиции сверхпрочных армирующих волокон и различных связующих. Они обладают специфическими механическими особенностями, существенно, отличающимися от свойств традиционных материалов (сталей, сплавов и др.), в частности анизотропией деформативных и прочностных свойств, низкой сдвиговой жесткостью, сдвиговой ползучестью. В таких условиях известные теории и методы расчета элементов конструкций не всегда правомочны, что требует обогащения исходных математических моделей состояния.  [c.3]

Па рис. 6 а приведены результаты эксперимента на ползучесть образца из конструкционной стали при нестационарных внешних термо-силовых условиях в температурном интервале, где нет структурно-фазовых изменений в материале. При этом характеристики в аппроксимирующей зависимости = К ехр [/( г, Т) определялись из стационарных экспериментов при фиксированных значениях сг и Т. Здесь точки — экспериментальные значения расчетная диаграмма  [c.732]

Для сравнения ползучести различных материалов вводится условная характеристика, называемая пределом ползучести. Предел ползучести—это напряжение, при котором деформация ползучести за данный промежуток времени достигает наперед заданной величины (устанавливаемой техническими условиями, исходя из нормального режима работы конструкции). Указанный промежуток времени обычно равен сроку службы рассчитываемой детали. Для определения предела ползучести по заданной величине деформации ползучести е уза определенный промежуток времени /у находим семейство кривых ползучести при различных значениях напряжений Оу (рис. 126, а). Затем проводим вертикаль на расстоянии /у,  [c.324]

Рассмотренные кривые ползучести являются основой расчетов на ползучесть. Для сопоставления сопротивлению ползучести раз личных материалов введена условная характеристика — так назы-1 ваемый предел ползучести.  [c.254]


Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]

Для некоторых сред получены термодинамические потенциалы, которые могут быть использованы в различного рода вариационных методах при решении ряда задач теории ползучести стареющих тел. Сформулированы ограничения на упругие и реологические характеристики стареющих материалов, в частности, на их модуль упругомгновенной деформации Е (t), меру ползучести С I, т) и меру релаксаций Q (i, т), накладываемые вторым началом термодинамики.  [c.75]

Методы измерения твердости материалов прочно вошли в практику контроля качества и проведения научных исследований. Научная и практическая ценность этих измерений заключается в том, что по величине твердости можно судить о многих важных характеристиках свойств материалов, а часто и определять их. Из результатов многочисленных исследований следует, что твердость материала зависит от его кристаллической структуры и связана со многими механическими и физическими характеристиками, с пределами текучести, прочности, усталости, с ползучестью и длительной прочностью, сжимаемостью, коррелируется также с некоторыми магнитными и электрическими свойствами. Измерение твердости является простым, но высокочувствительным методом исследования механизма пластической деформации, старения, наклепа, возврата, рекристаллизации и других фазовых и структурных превращений.  [c.22]

Для оценки влияния поверхности раздела на механические свойства рассмотрены результаты аналитических и экспериментальных исследований композитов с металлической матрицей. Для конструкционных композитных материалов наиболее важными являются следующие свойства модуль упругости, пределы текучести и прочности, характеристики микродеформации, ползучести и усталости. Поверхность раздела наиболее полно определяют структура, стабильность и прочность связи. Для оценки прочности связи и эффективности передачи нагрузки полезно простое правило смеси при этом необходимо, однако, учитывать все допущения и ограничения такого подхода.  [c.263]

Срок службы современных энергетических установок в зависимости от их назначения изменяется от нескольких тысяч до 250 000—300 000 ч. Проведение испытаний на ползучесть длительностью, близкой к сроку службы, является технически трудоемкой и дорогостоящей задачей и значительно отдаляет срок промышленного внедрения новых жаропрочных материалов, используемых в современных энергетических установках. В связи с этим существует необходимость прогнозирования характеристик прочности и пластичности на заданный ресурс по результатам испытаний ограниченной длительности.  [c.67]

Таким образом, формулы температурно-силовой зависимости основных характеристик прочности и пластичности жаропрочных материалов могут быть получены из уравнения (3.7), описывающего общие закономерности ползучести. Это гарантирует более высокую надежность прогнозирования и является принципиальным отличием метода экстраполяции по формулам (3.1)—(3.16) от других аналогичных предложений.  [c.84]


В условиях длительной эксплуатации энергетических установок имеют место, как правило, отклонения от заданных рабочих температур и напряжений. Кроме того, применяемые в теплоэнергетике материалы работают в условиях ползучести часто при напряженном состоянии, отличном от одноосного растяжения (металл трубных систем, клапанов паровпуска, дисков турбин и Т.П.). В то же Бремя характеристики жаропрочности этих материалов обычно определяют по испытаниям на одноосное растяжение при постоянной температуре.  [c.129]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]

При широком использовании сплавов циркония в ядерных реакторах хорошо известны лишь их кратковременные механические свойства под действием излучения. Сравнительно недавно отмечена важность знания влияния излучения на характеристики ползучести. Некоторые результаты исследований влияния излучения на ползучесть циркониевых сплавов сообщил Фарис [29]. По его данным, скорость ползучести материалов (исключая чистый цирконий) несколько возрастает при облучении нейтронами.  [c.260]

В рассмотренном нелинейном анализе предполагалось, что в материале отсутствуют сложные взаимодействия характеристик. То есть деформации ползучести, возникающие в результате действия усадочных напрял<еннй, не оказывают влияния на нелинейные кривые а(е) компонентов композита, на вид критерия пластичности и законы течения компонентов.  [c.279]

Для материалов, деформационный ресурс которых существенно уменьшается с увеличением длительности нагружения (например, жаропрочные никелевые сплавы), следует учитывать взаимное влияние процессов деформирования (кратковременного и длительного при ползучести), поэтому в общем виде уравнение (5.82) не является условием линейного суммирования ч при деформационном выражении слагаемых Я]—Я4. Данных для. экспериментального подтверждения этого уравнения мало, поэтому проверка уравнения (5.82) сделана в работе [13] в основном для частного случая, когда Я=1, т. е. для условия линейного суммирования повреждений, выраженных через деформационные характеристики процесса. Величина среднеквадратичного отклонения экспериментальных данных, взятых из различных источников, от расчетных значений по уравнению (5.82) не превышает 50%.  [c.149]

Нагрузки, воздействующие на конструкции, подразделяются на силовые и тепловые. Силовые нагрузки могут приводить к изменению физико-химических свойств материалов, к ползучести и дополнительным температурным деформациям. В ряде случаев этот вид нагрузки может вызвать изменение жесткости отдельных частей, изменение характера распределения внешних поверхностных нагрузок и динамических характеристик самой конструкции. Сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по элементам конструкции. В результате этого возникает неравномерная деформация конструкции, подобная деформация под действием силовых нагрузок. Поэтому обычно и выделяют дополнительные температурные напряжения.  [c.23]

Дальнейшие исследования по установлению взаимосвязи между приведенными параметрами качества поверхностного слоя и характеристиками эксплуатационных свойств (усталости, ползучести, длительной прочности, трения и износа, коррозии, эрозии и др.) позволят выделить из них наиболее существенные, которые будут использованы для разработки научно обоснованных справочно-нормативных материалов и методов расчетов по технологическому обеспечению оптимальных свойств поверхностного слоя деталей из условий их эксплуатации для регламентации параметров качества в процессе изготовления детали.  [c.54]

Для новых материалов определяются следующие характеристики механических свойств в пределах температур, для которых рекомендуется этот материал временное сопротивление разрыву (предел прочности), предел текучести, относительное удлинение, относительное сужение, относительное равномерное сужение, ползучесть, длительная прочность, циклическая прочность (для циклически нагруженных элементов), критическая температура хрупкости (по данным испытаний образцов типа IV по ГОСТ 6996—66 и ГОСТ 9454—60), сдвиг критической температуры хрупкости в результате старения и циклической усталости, длительная пластичность. Номенклатура и объемы определения указанных характеристик устанавливаются для каждого материала в зависимости от рекомендуемых температур и условий его эксплуатации. Механические свойства, определяемые первыми четырьмя из иеречясленных характеристик (ов, рабочую температуру. Ударная вязкость должна быть исследована в интервале от критической температуры хрупкости материала до температуры, указанной выше.  [c.24]


Для узлов высокотемпературных установок учет процесса ползучести должен производиться прежде всего из условия ограничения деформации изделия во время работы. Это требование является особо актуальным для деталей высокой точности, например, цилиндров или роторов турбин, и при использовании материалов с ограниченной деформаДион-ной способностью. Для установок с малой общей длительностью работы (не более нескольких сот часов), как например, узлов авиационных газовых турбин или ракетных установок, учитывается обычно общая деформация за заданный период времени. Для деталей, работаюитих длительный срок, принимают во внимание лишь накопление деформации на участке установившейся ползучести. За характеристику ползучести принимают значение предела ползучести о — напряжения, вызывающего заданную скорость деформации или заданное общее значение ее при температуре эксплуатации. Для узлов стационарных энергетических установок обычно под пределом ползучести понимают напряжение, вызывающее 1% деформации за 10 ч, и обозначают как где Т — температура испытания в °С,  [c.19]

Будем полагать, что болт и гайка изготовлены из материалов с одинаковыми характеристиками ползучести и что скорости деформаций .... связаны с напряжениями о,,,. . ., . . зависимостями установивн1ейся ползучести  [c.161]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]

Пусть бесконечно длинный стрингер малой толщины h прикреплен к полуплоскости, находящейся в условиях плоской деформации. Будем читать, что материалы стрингера и полуплоскости обладают свойством ползучести, которое характеризуется неоднородностью процесса старения. Обозначим меру ползучести стрингера l (i, т), переменный по его длине возраст — Ti (х), модуль упругости — El (i). Соответствующие характеристики для полуплоскости будут Са t, т). Та х) и t). В дальнейшем примем, что El (t) = Е] = onst, Е2 t) = Е2 = onst, Та = onst. Кроме того, считается, что для материала полуплоскости коэффициенты поперечного сжатия для упругой деформации Vi (i) и деформации ползучести Va t, т) одинаковы и постоянны  [c.136]

Во многих случаях необходимо определять основные механические характеристики при испытании малых образцов диаметром 3—6 мм и меньше (микрообразцов) и судить по этим характеристикам об интегральных свойствах материала в целом и о локальных свойствах отдельных исследуемых зон. Необходимость в применении малых образцов возникает, например, при исследованиях дефицитных материалов, изысканиях новых сплавов, изучении неоднородностей в свойствах отдельных зон по объему детали, исследованиях аварийных деталей, сварных и паяных швов и т. д. По результатам испытаний микрообразцов можно получить весьма важные теоретические и практические данные. Для того чтобы приблизить такие исследования к реальным условиям эксплуатации, необходимы создание специализированных машин (для испытаний при разных температурах, в вакууме, в различных газовых и жидких средах) и разработка новых методов микроиспытаний на ползучесть, длительную прочность и т. п. [205].  [c.76]

Степенные законы (76) и (776) приводят к частным задачам в том случае, когда для вычисления зависящих от температуры характеристик термореологически сложных материалов используются экспериментальные данные, полученные в изотермических условиях. Рассмотрим, например, степенной закон, выра-жаюш,ий функцию ползучести для ТСМ в форме (51)  [c.133]

Характеристики композитных материалов обычно обсуждают с точки зрения различных моделей, основанных на правиле смеси последнее является хорошим критерием прочности связи и вффективности передачи нагрузки поверхностью раздела. Поскольку этот подход принят и в настоящей главе, представляется целесообразным привести необходимые соотношения и перечислить основные предположения. Особое внимание будет уделено модулю упругости, закономерностям микродефор мации, макротекучести, пределу прочности и ползучести.  [c.233]

Работоспособность жаропрочных материалов в значительной степени зависит от сопротивления деформированию и разрушению при ползучести, а также от деформационной способности при ддитедьном разрыве. От характеристик пластичности зависит способность материала выравнивать напряжения в зоне их концентрации, ослаблять влияние кратковременных перегрузок, и, наконец, исчерпание деформационной способности приводит к преждевременным разрушениям.  [c.67]

Параметрическими диаграммами, изображенными на рис. 3.2—3.8, проиллюстрирована целесообразность использования уравнения типа (3.1) для оценки характеристики прочности и пластичности жаропрочных материалов. Оценим состоятельность уравнения типа (3.7) и возможность использования его для анализа общих закономерностей ползучести ряда жаропрочных сталей стационарного энергомашиностроения. Для этого проанализируем данные математической обработки кривых ползучести сталей разных марок. Как отмечалось выше, много образцов стали 15Х11МФБЛ испытано с измерением деформации при разных температурах. Обработкой первичных кривых ползучести, проведенной в соответствии с требованиями отраслевого стандарта, получено следующее уравнение состояния типа (3.7)  [c.84]

На рис. 7.5,6 показано распределение термических напряжений в матрице композита с ортогональной схемой армирования [0°/90°]s (свойства компонентов те же, что и у рассмотренного однонаправленного композита). Как видно, распределение усадочных напряжений в матрице изменяется со схемой армирования композита. У композита [0790°]s напряжения в матрице в направлении армирования значительно выше, чем в однонаправленном материале, и отношения главных напряжений различны. Влияние термических усадочных напряжений на механические характеристики слоистого композита будет обсуждаться в следующих разделах. Предварительно рассмотрим, как влияют на величину усадочных напряжений свойства ползучести полимерной матрицы. Без учета этих свойств нельзя рассчитать изменения поля напряжений, связанные с режимом охлаждения и дополнительного отверждения.  [c.262]

В монографии обобщены теоретические и экспериментальные исследования пластичности, ползучести и долговечности материалов при простых и сложных нестационарных нагружениях. Экспериментально показано, что основные гипотезы теории пластичности, ползучести и долговечности при сложных нестационарных процессах нагружения нарунгаются. Дана оценка влияния различных параметров сложности нагружения на основные характеристики пластичности, ползучести и долговечности. Приведены обобщающие уравнения и критерии предельного состояния материалов при сложных процессах нагружения.  [c.440]


Сплав А453 обычно применяют при повышенных температурах, так как он имеет превосходные прочность, сопротивление ползучести и окислению в этих условиях. Сплав используют для деталей крепежа, дисков и лопаток турбин, деталей форсажных камер реактивных двигателей. Он был применен в качестве криогенного материала в космической технике. Многие металлы с г. ц. к. решеткой являются прекрасными материалами для использования их при низких температурах, а сплав А453 содержит достаточно никеля для стабилизации аустенита при таких температурах. Поэтому его рассматривают в качестве конструкционного материала для ракет с ядерными силовыми установками, где необходимы исключительно высокие характеристики как при низких, так и при повышенных температурах. Сплав считается перспективным материалом для его применения при температуре 4К. Аустенитные нержавеющие стали серии 300 уже используют в прототипах сверхпроводящего оборудования сплавом А453 предполагают заменять их в  [c.321]

При испытании с параметром o= onst (рис. 16) материал нагружают прямоугольным импульсом напряжений различной длительности (рис. 16, а). Для динамического нагружения образца обычно используется удар длинного стержня, скорость которого определяет амплитуду, а длина — длительность ил пуль-са [81]. Указанному параметру испытания в пространстве aet соответствует плоскость o= onst (см. рис. 16, б), параллельная плоскости Eot, в которой лежит регистрируемая кривая e t). По своему характеру эта кривая аналогична обычной кривой ползучести (см. рис. 16, г) и позволяет выявить особенности зарождения и развития малой пластической деформации в им-пульсно нагруженном материале. Испытания с таким параметром широко применяются для исследования явления задержки текучести [337] и закономерностей распространения упругопластических волн в стержнях. Вместе с тем очевидно, что такие испытания не позволяют иолучнть данные о сопротивлении материала деформации в виде характеристик прочности (см. рис. 16, в).  [c.66]


Смотреть страницы где упоминается термин Материалы Ползучесть — Характеристики : [c.256]    [c.17]    [c.298]    [c.316]    [c.158]    [c.232]    [c.189]    [c.191]    [c.36]    [c.201]    [c.206]    [c.221]    [c.227]    [c.324]    [c.280]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.290 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.290 ]



ПОИСК



Материалы — Характеристики

Ползучесть брусьев материалов — Характеристика

Ползучесть — Гипотезы материалов — Характеристика

Характеристики длительной прочности, пластичности н ползучести конструкционных материалов

Характеристики материалов ползучести и последейтсвия



© 2025 Mash-xxl.info Реклама на сайте