Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация света . 2.6. Дисперсия света

Магнитное поле влияет на поляризацию света и в поперечном случае, так как дисперсия при и J Б различна. Поэтому линейно поляризованный свет, электрический вектор которого наклонен к магнитному полю на угол в 45°, превращается в эллиптически поляризованный свет эффект Фойгта). В качестве примера эффекта Фарадея на рис. 87 представлены измерения в ОаАз. Из (75.20) и (75.9) следует, что угол Фарадея со со /со . Таким образом, эффект линеен по В и квадратичен по длине волны. Закон А,, как видно из рисунка, хорошо выполняется для широкого интервала длин волн.  [c.300]


Рассмотренные выше процессы дисперсии и рассеяния света не исчерпывают, конечно, явлений, возникающих при взаимодействии света и вещества. Среди них чрезвычайно важное место и в принципиальном, и в практическом отношении занимает явление вращения плоскости поляризации света. Было обнаружено, что явление это имеет место в весьма разнообразных телах, получивших название естественно-активных. К числу таких тел принадлежат, например, сахар и ряд других органических веществ поэтому измерение вращения плоскости поляризации стало ходовым аналитическим методом в ряде промышленных областей. Исследования показали, что объяснение этого явления можно получить, рассматривая общую задачу взаимодействия поля световой волны с молекулами или атомами вещества, если только принять во внимание, конечные размеры молекул и их структуру.  [c.607]

ДИСПЕРСИЯ [волн — зависимость фазовой скорости гармонических волн от их частоты звука — зависимость фазовой скорости гармонических звуковых волн от их частоты линейная спектрального прибора — характеристика спектрального прибора, определяемая производной от расстояния между спектральными линиями по длине света оптического вращения — зависимость оптической активности вещества от длины волны проходящего через него линейно поляризованного света пространственная — зависимость тензора диэлектрической проницаемости среды от волнового вектора, приводящая, например, к вращению плоскости поляризации света — зависимость абсолютного показателя преломления вещества от частоты света]  [c.229]

Явления вращения плоскости поляризации можно наблюдать и в белом свете. В этом случае угол поворота для различных монохроматических составляющих оказывается разным. Угол поворота плоскости поляризации линейно поляризованного света зависит от длины волны р / ( ). Это явление носит название дисперсии вращения. При нормальной дисперсии удельное вращение р увеличивается с уменьшением длины волны. Известны случаи аномальной дисперсии вращения, т. е. когда наблюдается обратная зависимость удельного вращения от длины волны. Ниже приведем удельное вращение плоскости поляризации в зависимости от длины волны для кристаллического кварца (величины удельного вращения для правовращающего и левовращающего кварца одинаковы)  [c.230]


Пространственная дисперсия приводит к естественной оптической активности, а именно к повороту плоскости поляризации линейно-поляризованного света, распространяющегося через определенную среду. Можно ожидать, что пространственная дисперсия будет играть значительную роль только при очень малой длине волны X, которая сравнима с характерной длиной среды/. (Заметим, что теория, не учитывающая дисперсии, является нулевым приближением по/А.) Век-  [c.45]

Так как поляризация среды есть сумма дипольных моментов в единице объема, из равенства (5.15) следует, что величина Р пропорциональна Е. Поскольку в уравнение (5.9) входит вторая производная от Р по времени, влияние поляризации сводится к изменению эффективной скорости распространения света в среде. Конечно, то, что мы изложили, есть не что иное, как обычная теория дисперсии.  [c.117]

Особый ВИД поляризации — резонансный — наблюдается в диэлектриках при сверхвысоких радиочастотах, близких к оптическим. Эта поляризация связана с так называемой аномальной дисперсией света и недостаточно изучена.  [c.29]

Обратимся теперь к экспериментальной проверке соотношения (5.11). В табл. 1 сопоставлены экспериментально измеренные значения п и для ряда веществ (показатели преломления относятся к желтой линии натрия). Для газов, приведенных в этой таблице, закон Максвелла (5.11) хорошо согласуется с опытом. Для жидких углеводородов согласие хуже. Для воды и спиртов, а также для большинства других твердых и жидких тел наблюдаются резкие нарушения соотношения (5.11). Однако в этом нет ничего неожиданного. Дело в том, что значения е, приведенные в табл. 1, относятся к статическим электрическим полям, а значения п — к электромагнитным полям световых волн, частоты которых порядка 5 10 Гц. Диэлектрическая проницаемость е обусловлена поляризацией диэлектрика, т. е. смещением заряженных частиц внутри атомов и молекул под действием внешнего электрического поля. Для правильного сопоставления надо брать значения е, измеренные в электрических полях тех же частот. Действительно, атомы и молекулы обладают собственными частотами, так что амплитуды (и фазы) вынужденных колебаний электронов и ядер, из которых они состоят, зависят от частоты внешнего электрического поля. Особенно сильную зависимость следует ожидать в тех случаях, когда частота внешнего поля близка к одной из собственных частот атомов или молекул (резонанс ). В результате возникает зависимость показателя преломления вещества от частоты световой волны — так называемая дисперсия света.  [c.38]

Если второй поляризатор / 2, служащий анализатором, скрещен с первым (N2 J A i). то все же свет проходит через нашу систему. Однако, поворачивая поляризатор N2 на некоторый угол, можно вновь добиться полного затемнения поля..Это показывает, что в описанном опыте поляризованный свет, прошедший через кварц, не приобрел эллиптической поляризации, а остался линейно-поляризованным при прохождении через кварц плоскость поляризации лишь повернулась на некоторый угол, измеряемый поворотом анализатора N2, необходимым для затемнения поля в присутствии кварца. Меняя светофильтр, легко обнаружить, что угол поворота плоскости поляризации для разных длин волн различен, т. е. имеет место вращательная дисперсия.  [c.609]

При падении интенсивного, излучения на границу раздела двух сред в отраженном свете наблюдаются волны не только с частотой падающего излучения, но и с кратными, разностными и суммарными частотами. Будем говорить о случае падения монохроматической плоской волны с частотой о). Опыт показывает, что направления распространения отраженных волн с частотами со и 2о) немного, но все же отличаются друг от друга, причем это отличие зависит от дисперсии показателя преломления среды, в которой распространяется падающая волна. Интенсивность второй гармоники в отраженном свете нД несколько порядков меньше, чем в преломленной волне, и практически не зависит от степени выполнения условия пространственной синфазности. Как и в случае френелевского отражения, амплитуды отраженных волн с частотой 2со зависят от угла падения и ориентации электрического вектора относительно плоскости падения. Наблюдается и аналог явления Брюстера при некотором угле падения для пучка с поляризацией.  [c.845]


Взаимодействия вещества и С. Вещество оказывает различные влияния на распространение света, меняя его направление, скорость, состояние поляризации и частоту. Формальная теория Максвелла, характеризующая вещество только материальными константами (диэлектрической постоянной и Цроводимостью), не в состоянии объяснить этих влияний или л е объясняет их только вплоть до нек-рых постоянных, остающихся в теории нерасшифрованными. Электронная теория вещества, даже в ее наиболее общем, не детализированном виде в сочетании с электромагнитной теорией света значительно расширяет круг явлений, поддающихся кла ссич. объяснению (см. Отражение света, Дисперсия света, Вращение плоскости поляризации. Поляризация света. Рассеяние свет.а). Основой этого объяснения является представление об элементарных электромагнитных резонаторах, из которых построено вещество, взаимодействующее со световыми волнами. Квантовые свойства вещества и С. ограничивают однако точность выводов классической теории С. и в этой области. Это проявляется особенно отчетливо в явлениях рассеянрш С. и при расчете констант, характеризующих распространение С. в веществе. Наиболее резко квантовые свойства С. проявляются однако в его действиях на вещество. Виды действий С. могут быть различными в зависимости от конгломерата вещества, на к-рый действие производится. Элементарные частицы (электроны и протоны) могут испытывать только механич. действие—световое давление. Величина этого давления определяется оличеством движения  [c.149]

Первым указанием на непосредств. связь электромагнетизма с О. было открытие Фарадеем (1848) вращения плоскости поляризации света в магн. поле Фарадея эффект). Далее было установлено, что отношение эл.-магн. и электростатич. единиц силы тока по абс. величине и размерности совпадает со скоростью света с (нем. физики В. Вебер и Ф. Кольрауш, 1856). Максвелл теоретически показал, а нем. физик Г. Герц в 1888 подтвердил экспериментально, что изменения эл.-магн. поля распространяются в вакууме именно с этой скоростью. В прозрачной среде скорость света v= ln— =с1Уг1 1, т. е. определяется диэлектрич. и магн. проницаемостями среды. Открытие в 1862 франц. физиком Ф. Леру существования в узких участках спектра аномальной дисперсии (показатель преломления п увеличивался с ростом длины волны Я,), к-рая, как показал впоследствии нем. физик  [c.492]

Происхожденке термина пространственная дисперсия объясняется следующим образом. Обычная, или временная, дисперсия сводится к зависимости оптических характеристик среды от частоты света. Легко показать, что на временном языке частотная зависимость е (и) означает существование инерционности частиц среды по отношению к взаимодействию со светом, вследствие чего поляризация средг. в данный момент времени I зависит от значений поля в предыдущие моменты времени I I. Иными словами, существует нелокальная во времени связь между О (г, /) и (г, /). С этой точки зрения пространственная дисперсия есть пространственный аналог временной дисперсии.  [c.523]

Наличие дисперсии света является одним из фундаментальных- затруднений первоначальной электромагнитной теории света Мак- свелла. Эта теория, связавшая воедино электромагнитные и опти- ч/ ческие явления, представляла громадный шаг вперед и стала научным обобщением крупнейшего масштаба. Трприя )я1 гвр.п.пя-позволила раскрыть смысл явления Фарадея (вращение плоскости поляризации в магнитном поле), открытого почти за четверть века до того она, несомненно, стимулировала дальнейщие изыскания в области магнето- и электрооптики, приведшие к двум важным открытиям Керра двойного лучепреломления в электрическом поле и поворота плоскости поляризации при отражении от намагниченного ферромагнетика. Наконец, теория Максвелла устранила ряд неясностей и противоречий упругой оптики.  [c.539]

Информационными параметрами ОИ являются пространственно-временнйе распределения его амплитуды, частоты, фазы, поляризации и степени когерентности- Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК U соответствии с явле-. нпями интерференции, дифракции, поляризации, преломления, отражения, поглощения, расг еяння, дисперсии света, а также изменение характеристик  [c.48]

В соответствии с Нрамерса — Кронига соотношениями расщепление линий спектра поглощения связано с расщеплением дисперсионных кривых, характеризующих зависимость показателя преломления среды от длины волны излучения (см. Дисперсия света). Индуцированная магн. полем оптич. анизотропия может обнаруживаться не только в области поглощения, но и в области прозрачности среды. При этом в геометрии Фойгта она проявляется в виде различия показателей преломления для двух линейно поляризованных компонент (магнитное линейное двупреломление), а в геометрии Фарадея для двух циркулярных компонент (магнитное круговое двупреломление). Наиб, известен и широко применяется линейный по полю эффект магн. кругового двупреломления, проявляющийся в виде поворота плоскости поляризации линейно поляризованного света, распространяющегося через среду вдоль магн, поля Квадратич-  [c.701]

Вследствие зависимости дисперсии света от поляризации (или от направления распространения света) в анизотропной дихроич-ной среде возникает анизотропная окраска кристалла или оптической текстуры, что используется, например, для получения цветных изображений на плоских экранах. Как и двулучепреломление, дихроизм используется для получения линейно поляризованного света из неполяризованных световых пучков (с этой целью обычно применяются дихроичные полимерные пленки — поляризаторы). Дихроизмом некоторых кристаллов и текстур можно управлять с помощью внешних полей.  [c.28]

На рис. 3. 2 сравнивается дисперсия света в различных средах. В вакууме Д"сперсии иет и о) = с/е, где с — скорость света. В диэлектрике с исключительно оптической поляризацией при всех частотах, включая оптический диапазон, скорость электромагнитных волн уменьшается в ]/е пт раз (v = ln), а закон дисперсии вплоть до УФ-волн имеет вид a — kln. При дальнейшем повышении частоты происходят, во-первых, индуцированные светом электронные переходы и возникает широкая область поглощения (см. рис. 3.12,6). Кроме того, в УФ-об-ласти электронная поляризация уже не успевает изменяться со скоростью электромагнитного поля, так что для достаточно жесткого излучения коэффициент  [c.83]


НИИ белым светом, является прибор, снабженный кроме простых поляризатора и анализатора еще бикварцем Солей. Для той же цели вполне пригоден и поляристробометр Вильда. Наиболее распространенные полутеневые приборы в первоначальном виде не могут функционировать при освещении белым светом, т. к. при вращении плоскости поляризации обе половины поля окрашиваются в разный цвет вследствие вращательной дисперсии, и чувствительная полутеневая установка невозможна. Это затруднение обходится однако для растворов сахара применением кварцевого компенсатора Солей (см. КомпенсатАоры), Случайным образом вращательная дисперсия кристаллического кварца в видимой области спектра весьма точно совпадает с вращательной дисперсией различных сортов сахара за исключением синей и фиолетовой части спектра. Если компенсировать вращение сахара противоположным вращением кварца определенной толщины, то поле зрения не окрашивается и преимущества полутеневого прибора м. б. сохранены. На фиг. 12 дана схема расположения оптических частей сахариметра Липпиха с компенсатором Солей РКк Ы—источник света, Ь—линза. О, П— поляризатор Липпиха, А—анализатор, -  [c.164]

Количественная характеристика О, а. — угол поворота плоскости поляризации света. Для данного вещества угол tp прямо пропорционален пути светового луча в среде и зависит от длины волпы света. Эта зависимость наз. дисперсией оптической активности для разных оптическп-активных веществ она может быть весьма различной. Характер дисперсии О. а. очень чувствителен к изменениям структуры молекулы, к межмолекулярному взаимодействию, к влиянию томп-ры и давления, к влиянию растворителя и т. д. В связи с этим изучение О. а. важно не только в ( )изике, но и в химии и биологии.  [c.512]

ПОЛЯРИМЕТРИЯ — в широком смысле методы исследования структуры, свойств или состояния вещества, в к-рых применяется поляризованный свет наир., спектроскопия молекулярная в поляризованном свете, изучение различных объектов иа основе интерференции поляризованных лучей (с применением микроскопа поляризационного), поляриаа-циопно-оптический метод исследования напряже 1ий и т. д. В узком смысле П. — методы исследования, основанные на измерении величины вращения плоскости поляризации света при прохождении его через оптически-активные вещества, т. е. па измерении их оптической активности. Величина вращения в растворах зависит от их концентрации поэтому П. широко применяется для измерения концентрации оптически-активных веществ (см. Сахариметрия). Измерение вращательной дисперсии — изменения угла вращения для света с ра.зличной длиной волны, — т. н. с п е к т р о II о л я р и м е т-р и я позволяет изучать строение веществ. Измерения производятся поляри.нетрами и спектрополяримет-рамп.  [c.165]

ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ света, поворот плоскости поляризации линейно поляризованного света при его прохождении через в-во (см. Поляризация света). Наиболее простое модельное объяснение явления В. п. п. состоит в следующем. Линейно поляризованный пучок света можно представить как результат сложения (сумму) двух пучков, распространяющихся в одном направлении и поляризованных по кругу с противоположными направлениями вращения. Если два таких пучка распространяются в в-ве с разл. скоростями (т. е. если преломления показатели в-ва для них неодинаковы), то это приводит к повороту плоскости полярнзации суммарного пучка. В. п. п. может быть обусловлено либо особенностями внутр. структуры в-ва (см. Оптическая акпгиёность), либо вз-ствием в-ва с внеш. Махн. полем (см. Фарадея эффект). Как правило, В. п. п. происходит в оптически изотропных средах с пространственной дисперсией (кубич. кристаллы, жидкости, р-ры и газы). Измеряя В. п. п, и его зависимость от длины волны света (т. н. вращательную дисперси ю), исследуют особенности строения в-ва и определяют концентрации оптически активных веществ в р-рах. В. п. п. используют в ряде оптич. приборов (оптич. модуляторы, затворы, вентили, квант, гироскопы и др.).  [c.91]

Расщепление спектр, линий влечёт за собой соответствующее расщепление дисперс, кривых, характеризующих зависимость показателя преломления среды от длины волны излучения (см. Дисперсия Света, Преломление света). В результате при продольном (по полю) распространении показатели преломления для света с правой и левой круговыми поляризациями становятся различными (магнитное циркулярное двойное лучепреломление), а линейно поляризованный монохроматич. свет, проходя через среду, испытывает вращение плоскости поляризации. Последнее явление носит назв. Фарадея эффекта. В области линии поглощения фарадеевское вращение проявляет характерную немонотонную зависимость от длины волны — эффект Мака-луао — Корбин о. При поперечном относительно магн, поля распространении света различие показателей преломления для линейных поляризаций приводит к линейному магнитному двойному лучепреломлению, известному как Коттона — Мутона эффект (или эффект Фохта), Изучение и использование всех этих эффектов входит в круг проблем совр. М.  [c.382]

Дальнейшее развитие О. связано с открытиями дифракции света (итал. учёный Ф. Гримальди опубликовано в 1665), интерференции света, а также двойного лучепреломления (дат. учёный Э. Бартолин, 1669), не поддающихся истолкованию в рамках геом. О., и с работами англ. учёных И. Ньютона, Р. Гука и голл. учёного X. Гюйгенса. Ньютон обращал большое внимание на периодичность световых явлений и допускал возможность волновой их интерпретации, но отдавал предпочтение корпускулярной концепции света, считая его потоком ч-ц, действующих на эфир (этот термин для обозначения наделённой механич. св-вами среды — переносчика света ввёл Декарт) и вызывающих в нём колебания. Движением световых ч-ц через эфир переменной (вследствие колебаний) плотности и их вз-ствием с матер, телами, по Ньютону, обусловлены преломление и отражение света, цвета тонких плёнок, дифракция света и его дисперсия (Ньютоном же подробно изученная). Ньютон не считал возможным рассматривать свет как колебания самого эфира, т, к. в то время на этом пути не удавалось удовлетворительно объяснить прямолинейность световых лучей и поляризацию света (впервые осознанную именно Ньютоном и следовавшую из классич. опытов Гюйгенса по двойному лучепреломлению). Согласно Ньютону, поляризация — изначальное св-во света, объясняемое определ. ориентацией световых ч-ц по отношению к образуемому ими лучу.  [c.492]

ТГОЛЯРИМЁТРИЯ, методы исследования, основанные на измерении 1) степени поляризации света и 2) оптической активности, т. е. величины вращения плоскости поляризации света при прохождении его через оптически активные вещества. Величина такого вращения в растворах зависит от их концентрации поэтому П. широко применяется для измерения концентрации оптически активных в-в (см. Сахариметрия). Измерение вращательной дисперсии — изменения угла вращения при изменении длины волны света (т. н. с п е к-трополяриметрия) — позволяет изучать строение в-в. Измерения производятся поляриметрами и с п е к-трополяриметрами.  [c.578]

Дуализм свойств света. При исследовании законов фотоэффекта в опытах по наблюдению рассеяния фотонов на электронах обнаруживается квантовая, корпускулярная природа света. Но вместе с тем свет обнаруживает способность к дифрагсции, интерференции, преломлению, отражению, дисперсии, поляризации и все эти явления полностью объясняются на основе представлений о свете как электромагнитной волне.  [c.304]


В этой главе рассмотрено действие поля световой волны на движение заряженных частиц, связанных в атоме квази ругими силами. Решение данной задачи позволит понять разнообразные физические явления, истолкование которых невозможно с позиций классической электромагнитной теории света. Так, например, кроме подробно рассмотренной дисперсии вещества, привлечение электронной теории позволяет рассмотреть основы нелинейной оптики, своеобразное свечение ряда веществ при возбуждении их частицами, скорость которых удовлетворяет соотношению и > с/п, количественно исследовать вращемие плоскости поляризации в веществе, помеп енном в продольное магнитное поле, а также решить ряд других актуальных задач.  [c.135]

Опыт показывает, что разность показателей преломления По—tie, являющаяся мерой возникшей анизотропии, пропорциональна давлению F, которому подвергается деформируемое тело По—tie = kF, где k — константа, определяемая свойствами вещества. Разность фаз, которую приобретут лучи при прохождении слоя d в веществе, равна ф=(2я Д)(/го—tie)=gFd, где g=2nklX — новая константа. В зависимости от рода вещества константа g может быть положительна или отрицательна. Кроме того. По и Пе зависят от длины волны (дисперсия двойного лучепреломления), поэтому при наблюдении в белом свете просветленное поле оказывается окрашенным, аналогично тому, как оно окрашено при наблюдении хроматической поляризации, даваемой естественными кристаллами.  [c.64]

Пусть параллельный пучок монохроматического света (рис. 20.1), поляризованный при помощи поляризатора Пь падает на пластинку, вырезанную из кристаллического кварца перпендикулярно к оптической оси 00. Известно, что свет, распространяющийся вдоль оптической оси в одноосных кристаллах, не претерпевает двойного лучепреломления, следовательно, второй поляризатор Пг, скрещенный с Пь не должен пропускать света. Однако в данном опыте свет при скрещенных поляризаторах все же проходит. Поворачивая Пг на некоторый угол, можно вновь добиться полного затемнения поля. Это свидетельствует о том, что свет, прошедший через кристалл кварца, остался линейно поляризованным, но плоскость поляризации повернулась на некоторый угол, измеряемый поворотом Пг. Изменяя длину волны света, можно обнаружить, что угол поверота плоскости поляризации различен для разных длин волн, т. е. имеет место дисперсия оптического вращения.  [c.71]

ЗАКОН [Бера для разбавленных растворов поглощающего вещества в непоглощающем растворителе коэффициент поглощения света веществом зависит от свойств растворенного вещества, длины волны света и концентрации раствора Био для вращательной дисперсии в области достаточно длинных волн, удаленной от полос поглощения света веществом, угол вращения плоскости поляризации обратно пропорционален квадрату длины волны Био — Савара — Лапласа элементарная магнитная индукция в любой точке магнитного поля, создаваемого элементом проводника с проходящим по нему постоянным электрическим током, прямо пропорциональна силе тока в проводнике, абсолютной магнитной проницаемости, векторному произведению вектора-элемента длины проводника на модуль радиуса-вектора, проведенного из элемента проводника в данную точку и обратно пропорциональна кубу модуля-вектора Бойля — Мариотта при неизменных температуре и массе произведение численных значений давления на занимаемый объем идеальным газом постоянно Брюстера отраженный свет полностью линейно поляризован при угле падения, равному углу Брюстера, тангенс которого должен быть равен относительному показателю преломления отражающей свет среды Бугера — Ламберта интенсивность J плоской волны монохроматического света уменьшается по мере прохождения через поглощающую среду по экспоненциальному закону J=Joe , где Jo — интенсивность света на выходе из слоя среды толщиной / а — показатель поглощения среды, который зависит от химической природы и состояния поглощающей среды и от волны света Бунзеиа — Роско количество вещества, прореагировавшего в фотохимической реакции, пропорционально мощности излучения и времени освещения Бернулли в стационарном потоке сумма статического и динамического давлений остается постоянной ]  [c.231]


Смотреть страницы где упоминается термин Поляризация света . 2.6. Дисперсия света : [c.286]    [c.404]    [c.648]    [c.428]    [c.278]    [c.342]    [c.331]    [c.105]    [c.44]    [c.499]    [c.300]    [c.592]    [c.288]    [c.207]    [c.584]    [c.867]    [c.652]    [c.697]    [c.392]    [c.311]   
Смотреть главы в:

Справочное руководство по физике  -> Поляризация света . 2.6. Дисперсия света



ПОИСК



Дисперсия

Дисперсия поляризации

Дисперсия света

Поляризация

Поляризация света

Свет Поляризация

Свет — Дисперсия



© 2025 Mash-xxl.info Реклама на сайте