Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Информация дефектоскопическая

КОГЕРЕНТНО-ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ДЕФЕКТОСКОПИЧЕСКОЙ ИНФОРМАЦИИ  [c.97]

Дефектоскопическая информация во многих случаях представляет собой изображения различного типа. Например, при контроле усталостных трещин оператор сравнивает изображения эталонной и контролируемой поверхностей.. Аналогичные операции многократно выполняются при сравнении формы однотипных изделий, выявлении дефектов заданного типа на фоне структурных помех и т. д. Это вызывает утомление операторов и приводит -к ошибкам распознавания дефектов. Во всех этих случаях эффективно применение когерентно-оптических методов фильтрации основных частот изображения, позволяющих устранить ошибки операторов. Любое изображение можно представить его частотны.м спектром (спектром Фурье), представляющим собой совокупность синусоидальных решеток с различным периодом изменений яркости и различной ориентации на плоскости. Двумерное преобразование Фурье может быть -выполнено с помощью ЭВМ, однако оптические устройства выполняют эту операцию существенно проще и быстрее. Воздействуя на спектр изображения с помощью различных устройств (масок, диафрагм), можно осуществлять его обработку в реальном масштабе времени.  [c.97]


Капиллярный дефектоскопический материал применяют при капиллярном неразрушающем контроле и используют для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатков с целью получения первичной информации о наличии несплошности в объекте контроля.  [c.147]

Поэтому огромное значение приобретает разработка устройств, которые позволили бы вводить информацию в машину непосредственно в виде обычного изображения поверхности контролируемого объекта, обработанного дефектоскопическими материалами, например люминесцентными в УФ-излучении. Иными словами, нужны устройства, которые бы опознавали любые образы. Создав опознающие устройства, заменяющие зрение человека, их можно было бы использовать в качестве роботов-разбраковщиков, что освободило бы человека от утомительной и часто непроизводительной, но ответственной работы контролера-дефектоскописта.  [c.178]

Методы радиационного контроля различаются способами детектирования дефектоскопической информации (рис. 2) и соответственно делятся на радиографические, радиоскопические и радиометрические.  [c.266]

Методы просвечивания основаны на законе ослабления проходящего через контролируемый объект излучения, которое меняется в зависимости от плотности материала и толщины (рис. 1.1). Излучение от источника /, пройдя через контролируемый объект 2, имеющий различную толщину и дефекты 3, 4, будет поглощаться по-разному в различных участках. Изменение интенсивности регистрирует детектор 5. Методы радиационной дефектоскопии различают по способу регистрации (детектирования) дефектоскопической информации.  [c.14]

Для проведения радиоизотопной дефектоскопии необходимы источник ионизирующего излучения, контролируемое изделие, детектор, регистрирующий дефектоскопическую информацию (рис. 1).  [c.4]

М изменяет интенсивность и энергию выходящего пучка излучения на /И и который содержит дефектоскопическую информацию о структуре контролируемого изделия. Методы радиоизотопной дефектоскопии радиографический, радиометрический, радиоскопический—различаются способами детектирования получаемой информации. Изделия просвечивают с использованием радиоизотопных источников излучений тормозного, у-излучения, нейтронов и т. п.  [c.4]

При проведении комплексных расчетов на прочность и ресурс в детерминированной постановке используют всю исходную информацию об осредненных характеристиках эксплуатационной нагруженности, о средних или гарантированных критериальных характеристиках сопротивления разрушению конструкционных материалов, об осредненных характеристиках исходной дефектности, определяемой по нормам дефектоскопического контроля.  [c.84]


Различают многоэлементные и одноэлементные системы сканирования. Многоэлементные системы состоят из ряда неподвижных входных преобразователей, расположенных относительно друг друга линейно, мат-рично и т.д. Информация с многоэлементной входной системы снимается путем предварительного усиления сигнала каждого преобразователя и последующего коммутирования всех входных сигналов электронным коммутатором для дальнейшей вторичной обработки. Подобного рода системы входных преобразователей отличаются большой скоростью получения информации с определенной площади контролируемого объекта. В ряде случаев они также требуют перемещения относительно контролируемого объекта. Недостатками многоэлементных систем являются их громоздкость, пониженные чувствительность и разрешающая способность при обнаружении дефектов типа нарушения сплошности. Объясняется это тем, что дефекты нарушения сплошности имеют малые размеры (от микрометров до миллиметров) и для получения необходимой информации с помощью ряда неподвижных преобразователей требуется, чтобы размеры преобразователя или зона его контроля была значительно меньше, чем размеры дефекта. Для дефектоскопического контроля это часто трудноосуществимая задача.  [c.36]

Информационными параметрами ОИ являются про-странственно-временные распределения его амплитуды, частоты, фазы, поляризации и степени когерентности. Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК в соответствии с явлениями интерференции, дифракции, поляризации, преломления, отражения.  [c.486]

Приборы капиллярного неразрушающего контроля -это устройства, с помощью которых получают, передают и преобразуют информацию о технологических операциях, дефектоскопических материалах или наличии несплошности для непосредственного восприятия оператором или средством, его заменяющим.  [c.571]

Современные средства дефектоскопии, использующие для обработки и отображения информации ЭВМ и другие достижения научно-технического прогресса, все более становятся неотъемлемой частью производственных процессов. Дефектоскопические системы встраиваются в технологические линии, осуществляют контроль качества продукции и автоматическую корректировку параметров технологического процесса. При этом повышаются не только качество и надежность изделий, но и эффективность производства, что в итоге удешевляет продукцию как за счет снижения доли брака в готовых изделиях, так и вследствие улучшения эксплуатационных свойств изделий, снижения по -терь из-за простоев и ремонта оборудования, штрафных санкций, расходов на гарантийное обслуживание и т.д. Повышение качества изделий за счет дефектоскопии на отдельном технологическом участке через систему прямых и обратных связей влияет на качество изделий и работы всего народного хозяйства в целом.  [c.137]

Одним из важных вопросов, касающихся измерительной аппаратуры дефектоскопов, является достаточность получаемой информации для оценки параметров дефектов сплошности с заданной точностью при имеющейся погрешности измерений. Разработана методика, позволяющая определить количество информации, получаемой внутритрубным дефектоскопом, и оценить максимально допустимую точность определения параметров дефекта сплошности. Это позволяет не только реально оценивать границы возможностей данного типа дефектоскопа в лабораторных условиях, но и выявлять "узкие" места в измерительной аппаратуре. Постановка обоснованных требований к качеству измерений приводит к значительной экономии средств при разработке дефектоскопической аппаратуры. Например, в вопросе применения других типов датчиков магнитного поля оказалось, что в определенных условиях они не дают дополнительной информации и лишь дублируют сигналы с имеющихся преобразователей поля, что позволило отказаться от применения такого технического решения.  [c.228]

Очень большое значение в современной дефектоскопии имеет методология выделения полезного сигнала. Эти вопросы с достаточной полнотой рассмотрены в гл. 7. Глава хорошо написана, содержит очень ценный материал и, несомненно, вызовет большой интерес у читателей. По-видимому, следует сделать только два дополнения. Во-первых, вслед за созданием методов обработки информации, в наибольшей степени приспособленных для использования ЭВМ, возникает задача более полного ис пользования ЭВМ при проектировании соответствующих дефектоскопов. В машинных методах проектирования, вообще говоря, могут использоваться широко известные приемы машинного проектирования электронных схем. Специфичность задачи здесь состоит в разработке методов перехода от свойств сигналов к структуре прибора. В- работе [23] приведено использова-ние для этой цели факторного анализа, а в работе [24] — сочетания методов экстремального планирования экспериментов и быстрого преобразования Фурье. Во-вторых, дефектоскопические сигналы стремятся снабдить такими признаками, чтобы для их выделения можно было использовать устройства, основанные на теории корректирующих кодов. В этом направлении уже созданы в СССР образцы дефектоскопов [25, 26].  [c.12]


Экспертное обследование предполагает получение информации о фактическом состоянии элементов длительно проработавшего оборудования, наличия в нем повреждений, выявления причин и механизмов возникновения повреждений. Оно должно проводиться в соответствии с программой, разработанной на основе анализа технической документации, а также данных функциональной диагностики и должно включать визуальный (внешний и внутр)енний) контроль измерение геометрических параметров и толщины стенок замер твердости и определения механических характеристик, металлографические исследования основного металла и сварных соединений определение химического состава дефектоскопический контроль (вид и объем которого устанавливаются с учетом требований полноты и достаточности выявления дефектов и повреждений) испытания на прочность и герметичность и др.  [c.166]

Рассмотрим условия, опреде.пяющие долговечность элемента конструкции на стадии развития трещины. Как указывалось, число циклов, соответствующее росту трещины от начальной длины и до критической /с, определяет долговечность данного элемента конструкции по числу циклов. Чтобы обеспечить прочность конструкции, долговечность должна быть больше числа перемен заданной нагрузки. Таким образом, наряду с оценкой материала по классической кривой Велера, существенную информацию о поведении элемента конструкции с трещиной в условиях усталости должна дать механика разрушения. Следовательно, в данном случае, как обычно, надо исходить из того, что начальный трещиноподобный дефект существует в конструкции с момента ее изготовления (несмотря на дефектоскопический контроль, который, как известно, имеет определенный допуск на размер не-обиаружпваемых дефектов). К сварным конструкциям это относится в большей мере, и в этом случае желательно иметь критические значения коэффициентов иитеисивиости напряжений (Кс или Я/с) для основного материала, материала шва и материала переходной, термически поврежденной, зоны. Кроме этого, для сварных конструкций я елательно в области сварного шва знать величину и распределение остаточных напряжений. Все это вместе взятое способствует уточнению расчетов.  [c.272]

Недостатком многоэлементных систем является их громоздкость, пониженные чувствительность и paspe-шающая способность при обнаружении дефектов типа нарушения сплошности. Объясняется это тем, что дефекты нарушения сплошности имеют малые размеры (от микрон до миллиметров) и для получения необходимой информации с помощью ряда неподвижных преобразователей требуется, чтобы размеры преобразователя или зона его контроля были значительно меньше, чем размеры дефекта. Для дефектоскопического контроля это часто трудно осуществимая задача.  [c.29]

Информационными параметрами ОИ являются пространственно-временнйе распределения его амплитуды, частоты, фазы, поляризации и степени когерентности- Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК U соответствии с явле-. нпями интерференции, дифракции, поляризации, преломления, отражения, поглощения, расг еяння, дисперсии света, а также изменение характеристик  [c.48]

Капиллярный метод дефектоскопии позволяет обнаружить микроскопи-lie Kne поверхностные дефекты на изделиях практически из любых конструкционных материалов. Разнообразие дефектоскопируемых изделий и различные требования к их надежности требуют дефектоскопических средств различной чувствительности. В настоящее время разработан значительный ассортимент материалов, применяемых при капиллярном неразрушающем контроле и предназначенных для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатков с целью получения первичной информации о наличии несплошности в объекте контроля. Они широко используются предприятиями различных отраслей промышленности.  [c.151]

В нашей стране разработаны основные принципы построения агрегатной системы приборов неразрушающего контроля (АСНК), предназначенных для дефектоскопии широкой номенклатуры исходных материалов магнитным, ультразвуковым, вихретоковым, рентгеновским, радиотехническим и другими методами. В подшипниковой, трубной и других отраслях промышленности уже внедряются высокопроизводительные комплексы приборов для неразрушающего контроля. В большинстве случаев предусматривается использование ЭВМ для обработки дефектоскопической информации с целью ее использования в системах управления качеством.  [c.222]

Рассмотрим условия, определяющие долговечность элемента конструкции на стадии развития трещины. Как указывалось, число циклов, соответствующее росту трещины от начальной длины /о до критической h, определяет долговечность данного элемента конструкции по числу циклов. Чтобы обеспечить прочность конструкции, долговечность должна быть больше числа перемен заданной нагрузки. Таким образом, наряду с оценкой материала 1[0 классической кривой Вёлера, существенную информацию о поведении элемента конструкции с трещиной в условнях усталости должна дать механика разрушеппя. Следовательно, в данном случае, как обычно, надо исходить из того, что начальный трещиноподобный дефект существует в конструкции с момента ее изготовления (несмотря на дефектоскопический контроль, который, как  [c.142]

Другим примером современного дефектоскопического средства является устройство "Лайналог" фирмы АМФ Тубоскор (США), которое применяют для контроля состояния стенки действующего трубопровода. Устройство может эффективно применяться для контроля трубопроводов, транспортирующих газ с высоким содержанием сероводорода. Несмотря на высокую стоимость, устройство обладает существенными достоинствами значительный объем получаемой информации (до 32 каналов записи регистрационных сигналов) высокая разрешающая способность датчиков длительный режим автономной работы.  [c.120]


При радиометрическом контроле сварных соединений нашли применение два основных метода среднетоковый и импульсный. В основном различие между ними определяется способом регистрации прошедшего излучения и электронной обработки дефектоскопической информации.  [c.38]

Оптичеср1й неразрушающий контроль основан на взаимодействии электромагнитного излучения с контролируемым объектом и регистрации результатов этого взаимодействия. Методы, относящиеся к оптическому НК по ГОСТ 24521-80, различаются длиной волны излучения или их комбинацией, способами регистрации и обработки результатов взаимодействия излучения с объектом. Общим для всех методов является диапазон длин волн электромагнитного излучения который составляет 10" ...10 м (3 10 .,.3 10 Гц) и охватывает диапазоны ультрафиолетового (УФ), видимого (ВИ) ((3,8...7,8) 10" м) и инфракрасного (ИК) излучения, а также информационные параметры оптического излучения, которыми являются пространственно-временное распределение его амплитуды, частоты, фазы, поляризации и степени когерентности. Изменение этих параметров при взаимодействии с объектом контроля в соответствии с основными физическими явлениями (интерференции, поляризации, дифрак-ции преломления, отражения, рассеяния, поглощения и дисперсии излучения), а также изменения характеристик самого объекта в результате эффектов люминесценции, фотоупругости, фотозфомизма и др. используют для получения дефектоскопической информации. Оптическое излучение — это электромагнитное излучение, возникновение которого связано с движением электрически заряженных частиц, переходом их с более высокого уровня энергии на более низкий. При этом происходит испускание световых фотонов.  [c.53]

Дефектоскопическая информация во многих случаях представляет собой изображения различного типа. Например, при контроле усталостных трещин оператор сравнивает изображения эталонной и конфолируемой поверхностей. Аналогичные операции многократно выполняются при сравнении формы однотипных изделий, выявлении дефектов заданного типа на фоне структурных помех и т.д. Это вызывает утомление операторов и приводит к ошибкам распознавания дефектов. Во всех этих случаях эффективно применение когерентнооптических методов фильтрации основных частот изображения, позволяющих устранить ошибки операторов. Любое изображение можно представить его частотным  [c.513]

Мы также используем информацию, полученную в рамках этой исследовательской программы, для разработки совершенно новых методов анализа. Некоторые участники исследовательской группы работают над использованием искусственного интеллекта, т.е. нейросетей, способных автоматически классифицировать и составлять характеристики дефектов. В настоящее время происходит значительный прогресс, который, несомненно, приведет к созданию более надежного и точного дефектоскопического оборудования. В свою очередь, это приведет к более безопасной и эффективной эксплуатакщи существующих систем трубопроводов.  [c.123]

Целесообразно также обратить внимание на большие возможности использования голографических методов обработки дефектоскопической информации достижима обработка информации массивами со скоростью 10 операция1сек и плотность  [c.11]


Смотреть страницы где упоминается термин Информация дефектоскопическая : [c.266]    [c.431]    [c.40]    [c.95]    [c.545]    [c.344]    [c.54]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.97 , c.99 ]



ПОИСК



Информация

Когерентно-оптические методы анализа дефектоскопической информации



© 2025 Mash-xxl.info Реклама на сайте