Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двумерные конечные элементы

Рассмотрим еще один двумерный конечный элемент применительно к задаче поперечного изгиба пластин (рис. 3.18). Деформация жест-  [c.101]

Фиг. 2.2. Некоторые двумерные конечные элементы. Фиг. 2.2. Некоторые двумерные конечные элементы.

I 2.2. Двумерные конечные элементы  [c.50]

Метод конечных элементов допускает любую геометрическую форму дискретных элементов, на которые делится рассматриваемая область, и любой порядок полинома для аппроксимации О м х, у) в пределах элемента. Наиболее широкое применение получили простейшие линейные полиномы первого порядка, которые для двумерной функции принимают вид  [c.112]

При построении дискретной модели непрерывной величины, определенной в двух- или трехмерной области, основную идею метода конечных элементов используют аналогично. В двумерном случае элементы описываются функциями от х, у, при этом чаще всего рассматривают элементы в форме треугольника или четырехугольника (рис. 7.11). Функция элемента представляется плоскостью, если для данного элемента взято минимальное число точек, которое для треугольного элемента равно трем, а для четырехугольного —четырем.  [c.199]

Пусть двумерная среда разбита на треугольные конечные элементы (рис. I). Перемещение каждой из вершин треугольника ijm (рис. 2) выражается компонентами и,-, у,-, Uj, Vj, и , t , ,  [c.555]

Рассмотрим основы метода конечных элементов. Пусть требуется найти стационарное распределение температуры Т х, у) в двумерной области 5 с границей Г. Для изотропного материала и при учете внутренних источников теплоты математическая постановка задачи в дифференциальной форме имеет вид  [c.246]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]

Первый этап численного решения задачи методом конечных элементов включает выбор вида элементов и способа расположения в них узловых точек, разбиение области на элементы и размещение узлов, а также определение функций формы. Отметим, что эти функции существенным образом зависят от вида используемых элементов и способа расположения узлов. При решении двумерных задач  [c.132]

Конечные элементы предназначены для формализации задач в двумерной (2D) или трехмерной (3D) постановке. Графическими примитивами элементов являются узел , связь , грань .  [c.64]

Эти исследования проводились, главным образом, на двумерных (пластинчатых) образцах, что облегчает аналитическое и экспериментальное исследование. Лишь отдельные работы [11, 25, 47] были выполнены на трехмерных системах с цилиндрической симметрией, однако в этом случае трудности оценки влияния геометрических параметров еще более возрастают. В качестве основного экспериментального метода при этом применялся анализ напряжений методом фотоупругости, а в теоретических исследованиях широко (но не исключительно) использовались методы конечных элементов.  [c.62]


Если при рассмотрении двумерных (пластины и оболочки) или трехмерных (массивы) объектов континуальная информация о напряжениях и перемещениях на контуре (поверхности) элемента конечных размеров такой системы за счет упрощающих предположений сводится к дискретной, то в принципе подход к анализу системы ничем не отличается от анализа стержневой системы. В таком случае континуальный объект представляется дискретной расчетной схемой и алгоритм анализа напряженно-деформированного состояния ее полностью остается идентичным алгоритму для стержневой системы. На таком подходе основан так называемый метод конечных элементов.  [c.555]

Расчет объемных теплоемкостей и потоков тепла в линейном двумерном изопараметрическом конечном элементе. Для определения значения функции у в произвольной точке элемента по значениям этой функции в четырех узлах (см. рис. 1.5) используют интерполяционную формулу  [c.28]

По разработанной программе методом конечных элементов решены осесимметричные двумерные задачи упругости для вала с четырьмя различными г (глубинами / трещин). При расчете задавались следующие численные значения параметров  [c.173]

Библиотеки конечных элементов содержат их модели — матрицы жесткости. Очевидно, что модели конечных элементов будут различными для разных задач (анализ упругих или пластических деформаций, моделирование полей температур, электрических потенциалов и т. п.), разных форм конечных элементов (например, в двумерном случае — треугольные рши четырехугольные элементы), разных наборов координатных функций.  [c.218]

Так как под знаки интегралов по объему и поверхности тела в различных вариантах интегральной формулировки задачи теплопроводности входит искомое распределение температуры и компоненты его градиента, достаточно в простейшем варианте МКЭ в качестве кусочно-непрерывных функций w (M) рассматривать линейные функции от координат точки Л/е V , в пределах каждого конечного элемента объемом Vy, имеющего номер у. Тогда в случае трехмерной задачи распределение температуры в пределах конечного элемента однозначно выражается через четыре значения температуры в точках, которые будут соответствовать вершинам тетраэдра, в случае двумерной задачи - через три значения в вершинах треугольника, а для одномерной задачи - через два значения на концах элемента в виде отрезка прямой.  [c.207]

Часто перед инженером ставят задачу определить коэффициент интенсивности напряжений для трещин в конструкции сложного очертания после ее разрушения или при проектировании изделий с гарантированной безопасностью. Коэффициент интенсивности напряжений в такого рода сложных задачах обычно определяется нз уже имеющихся решений для идеализированных конструкций путем перехода от сложных задач к более простым на основе ряда дополнительных предположений, вытекающих из соображений здравого смысла. Если такого рода переход от сложного к простому нельзя осуществить с полной уверенностью в его допустимости, то для определения коэффициента интенсивности напряжений в вершине трещины можно использовать численные методы, например метод конечных элементов (что и составляет основное содержание данной книги). Однако иногда сложные задачи о трещинах в областях с высокой концентрацией напряжений можно свести к двумерным, что позволяет, не прибегая к громоздкому аппарату численных методов, найти готовые аналитические или численные решения в уже опубликованных книгах [40—42]. Ниже будет рассмотрена одна из таких простых методик определения коэффициента интенсивности напряжений для прямолинейных трещин в областях с высокой концентрацией напряжений.  [c.31]

Привлекательный выход из этой ситуации заключается в том, что окрестность фронта трещины моделируется как трехмерная область, а остальная часть тела — как двумерная, после чего эти области связываются при помощи переходных (конечных) элементов, обладающих необходимой совместимостью в обеих областях. Подобный подход, безусловно, должен уменьшить стоимость вычислений без потери существенных характеристик каждой из областей. Мы не знаем, предпринималась ли подобная попытка в прошлом, однако идея переходного элемента не является новой [31].  [c.333]


Для начала рассмотрим двумерную область . В этом случае область можно рассматривать в качестве плоской, которую дискретизируют с помощью конечных элементов основных типов (треугольных, четырехугольных). С каждым элементом связана интерполяционная функция или функция формы по перемещениям, т. е. мы имеем возможность связать внутренние значения перемещений и с узловыми значениями и (узлы элементов размещают в его вершинах, а иногда и на гранях в определенных  [c.343]

Решение двумерных задач методом конечных элементов  [c.96]

Анизотропный материал задается матрицей упругости (матрицей Гука), которая содержит в верхнем треугольнике 21 независимую константу. При моделировании конструкции двумерными конечными элементами применяется двумерная моле.ть анизотропного материала, характеризующаяся шестью независимыми упругихш константами.  [c.215]

Предложен и реализован в составе САПР подход к определению установившихся электромагнитных процессов, использующий метод конечных элементов для расчета распределения магнитного поля в поперечном сечении машин. Кроме того, разработаны цифровые модели явнополюсных машин классической конструкции, с гребенчатым ротором, неявнополюсных синхронных машин, индукторных машин с пульсирующим и постоянным потоком, машин с внешне- и внутризамк-нутым потоком и др. на основе инженерных методов расчета. Созданы проблемно-ориентированные пакеты программ Модель и Поле , включающие программы, соответствующие названным математическим моделям электрических машин, программные модули аналитической аппроксимации одно- и двумерных функций, набор программных средств численного решения нелинейных задач и графического отображения распределения магнитного поля.  [c.287]

Идея представления сплошной среды в виде системы элементов конечных размеров восходит еще к Пуассону ). Однако лишь появление ЭВМ позволило построить на ее основе эффективные методы расчета конструкций ). К настояшему времени с помощью метода конечных элементов оказалось возможным решать многие трехмерные задачи для линейно-уиругих конструкций и упругопластические задачи для двумерных конструкций. Ниже мы дадим подробное описание метода конечных элементов для плоской задачи теории упругости, а также изложим основы более сложных методов.  [c.552]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Метод конечных элементов получил значительное раз витие с 1950-х годов, когда появились большие ЭВМ. В на-стояшее время этот метод находит широкое применение при решении различных технических задач, к которым можно отнести задачи сопротивления материалов, гидромеханики, теплотехники, электротехники и др. При рассмотрении конечных элементов используются различные методы метод перемещений, метод напряжений, комбинированный метод и т. д. При исследовании механизма поведения композитов методом конечных элементов обычно ограничиваются анализом двумерной задачи. Ниже будет рассмотрена двумерная задача методом перемещений. Для более детального ознакомления с методом конечных элементов следует обращаться к специальной литературе [3.1, 3.2].  [c.51]

При решении двумерных плоских задач методом конечных элементов прежде всего необходимо рассматриваемую область (рис. 3.1) разбить на конечные элементы. Вершины элементов носят названия узлов. Выберем на рис. 3.1 для рассмотрения какой-либо элeJ Ieнт (pи . 3.2). На этот элемент действуют внешние силы и Yv, под действием которых происходит деформация элемента, рассматриваемого как упругое тело. В данном случае можно соответствующим образом установить узлы конечных элементов и определить усилия, действующие в узлах, полагая, что внешние силы, действующие на элементы, передаются лишь через узлы. Форма элементов, на которые разбивают тело, может быть самой разнообразной. Часто используют элементы треугольной формы, три вершины которых выбираются в качестве узлов (рис. 3.3).  [c.52]

Hhk" "kqb ГЛ1.,Чердыш ТД,- Капву А.Бj Автоматическая подготовка исходных данных для решения двумерных задач методом конечных элементов. - Государственный фоцд алгоритмов и программ,  [c.118]

Алгоритмы решения системы линейных уравнений не являются предметом исследования в методе конечных элементов, этому вопросу посвящена обширная специальная литература. Здесь мы хотим коснуться проблем хранения и решения систем уравнений в связи с тем, что этот этап решения задачи оказывает исключительное влияние на эффективность вычислений. Например, типичная двумерная задача приводит к матрице А=1000 с шириной ленты Я=100. Если проводить решение системы уравнений такого порядка методом Гаусса без учета симметрии и ленточности матрицы, а затем учесть эти факторы, то во втором случае для хранения матрицы требуется объем памяти в 10 раз меньший, чем в первом случае, и примерно в 100 раз меньше времени ЭВМ.  [c.57]


Для определения значений / по большой группе однотипных корпусов найдены основные характеристики трещин (см. 2.5). Максимальные значения /С и У определены двумя способами. В первом случае осуществлен численный эксперимент, в котором решались осесимметричные двумерные задачи упругости для корпуса, содержащего трещину. Решения получены методом конечных элементов. Результаты вычислений показали, что для всех характерных режимов термомеханического нагружения только компонента Ki существенна. Во втором случае коэффициенты интенсивности напряжений найдены по методике определения К в телах с дву- и трехмерными трещинами (см. гл. 3). Результаты, полученные двумя способами, отличались менее чем на 10 %. При этом для корпусов стопорных клапанов турбин К-200-130 ЛМЗ, изготовленных из стали 15Х1М1ФЛ, получено, что / находится на уровне 95 МПа м.  [c.134]

В этом случае поверхность, моделирующая геометрию трубы, разбивается на двумерные оболочечные элементы типа Plate. Концепция разбиения естественной геометрии конструкции на конечные элементы обычно используется для автоматического получения сеток. Для данной конечно-элементной модели результат зависит от подробности разбиения. Увеличение подробности разбиения улучшает точность вычисления напряжений (рис, 1.6). При этом максимальное перемещение в центре трубы изменяется незначительно - с 2,32 мм на грубой сетке (400 элементов), до 2,33 мм на подробной сетке (6 400 элементов).  [c.28]

Будучи по своей природе вариационным, метод конечных элементов хорошо приспособлен для решения двумерных и трехмерных задач прикладной механики со сложными граничными условиями. В СССР благодаря работам А. Ф. Смирнова, А. Р. Ржа-ницына, А. П. Филина, Л. А. Розина, А. В. Александрова, Б. Я. Лащеникова, Н. Н. Шапошникова, В. А. Постнова, В. Г. Корнеева и ряда других авторов этот метод получил четкое математическое обоснование и стал признанным инструментом в расчетах сооружений, в том числе таких элементов транспортных сооружений, как плиты, балки-стенки, оболочки, многослойная проезжая часть или грунтовые массивы, взаимодействующие с конструкциями.  [c.3]

Традиционные методы расчета стержневых систем имеют такую же последовательность, и многие ее аспекты подробно исследованы при разработке математического обеспечения для стержневых систем. Однако приложение этой схемы к расчету двумерных и трехмерных объектов требует решения многих специальных Бопросов. Одним из них является назначение расчетных узлов. Для стержневых систем эта процедура никаких затруднений не вызывает- За расчетные узлы, как правило, принимаются точки пересечения стержней, а за конечные элементы (КЭ) сами стержни или простейшие образования из них—крестообразные, рамнообразные и т. п. Для двумерных и трехмерных объектов эта процедура сходна с процедурой нанесения расчетной сетки в других численных методах. Положение часто осложняется высоким градиентом разрешающей функции, что вызывает необходимость сгущения расчетной сетки. По-видимому, автоматизация этого процесса будет весьма затруднительной, хотя за рубежом уже имеются примеры автоматического построения расчетной сетки для простейших случаев.  [c.96]

Различают МО двумерного (2D) и трехмерного (bD) моделирования. Основные применения 2 >-графики - подготовка чертежной документации в машиностроительных САПР, топологическое проектирование печатных плат и кристаллов БИС в САПР электронной гтромышленности. В развитых машиностроительных САПР используют как 2D-, так и 3 )-моделирование для синтеза конструкций, представления траекторий рабочих органов станков при обработке заготовок, генерации сетки конечных элементов при анализе прочности и т. п.  [c.145]


Смотреть страницы где упоминается термин Двумерные конечные элементы : [c.53]    [c.102]    [c.163]    [c.102]    [c.137]    [c.227]    [c.111]    [c.118]    [c.65]    [c.62]    [c.118]    [c.36]    [c.55]    [c.229]   
Смотреть главы в:

Многосеточные методы конечных элементов  -> Двумерные конечные элементы



ПОИСК



Конечный элемент

Круглый пруток. Двумерная задача. Метод конечных элементов

Решение двумерных задач методом конечных элементов

Тор двумерный

Элементы двумерные



© 2025 Mash-xxl.info Реклама на сайте