Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства сталей и влияние легирующих элементов

После закалки и высокого отпуска (улучшения) структура стали представляет собой сорбит — ферритно-карбидную смесь с зернистой формой карбидной фазы. Высокие механические свойства сорбита обусловлены влиянием легирующих элементов на прочность феррита, а также Дисперсность и количество карбидной фазы.  [c.258]

МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ, ВЛИЯНИЕ СТРУКТУРЫ И ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ  [c.364]


Влияние легирующих элементов на коррозионную стойкость сплавов. Легирующие элементы, изменяя структуру сплава, оказывают влияние на повышение его механических свойств и коррозионной стойкости. Хром вводят как основной элемент, способствующий пассивации стали, марганец  [c.61]

Были проведены исследования по влиянию содержания на механические свойства. Добавка Мп в количестве 1 % незначительно изменяет механические свойства стали. Увеличение же содержания Мп от 1 до 2% резко увеличивает предел прочности, не оказывая влияния на пластичность материала. При дальнейшем увеличении содержания Мп до 2,25% и выше прочность продолжает расти, но при этом ухудшается пластичность и ударная прочность. Важным преимуществом при использовании Мп как легирующего элемента является то, что он более эффективно, чем Ni задерживает переход к мартенситной структуре. Марганцовистая сталь не закаливается и поэтому обладает очень хорошей свариваемостью.  [c.334]

Способность упрочняться на ту или иную глубину при одинаковом содержании углерода определяется влиянием легирующих элементов, но при небольших сечениях изделий это влияние менее заметно, а в деталях крупного размера у углеродистых и менее легированных сталей механические свойства значительно ниже. Поэтому выбор марки стали зависит как от  [c.172]

Рассмотрим влияние углерода, постоянных примесей и легирующих элементов на механические свойства сталей.  [c.77]

В работах [2-4, 15-31] установлено, что в процессе нагрева и охлаждения при закалке и старении в МСС протекают сложные структурные изменения, обусловленные перераспределением атомов легирующих элементов с образованием различного количества остаточного аустенита, которые оказывают существенное влияние на физико-механические свойства сталей.  [c.161]

Влияние легирующих элементов на механические свойства сталей с ОЦК-решеткой. Механические свойства и разрушение сталей зависят от структуры, которая в первую очередь определяется химическим составом, размером действительного зерна и состоянием его границ, видом и характером неметаллических включений.  [c.598]

Легированные стали обладают наилучшими механическими свойствами после термической обработки. Это объясняется тем, что легирующие элементы задерживают диффузионные процессы и оказывают поэтому большое влияние на фазовые превращения, протекающие в стали при закалке и отпуске. Легирующие элементы повышают устойчивость закаленной стали против отпуска. Для  [c.271]


Растворение карбидов типа Ме Сц происходит в интервале 1000—1100° С, а карбидов Nb или Ti — ири более высокой температуре. Поэтому обычно применяемая для стали на основе Х13 без специальных легирующих добавок температура нагрева под закалку, соответствующая Ас + 50 град в данном случае недостаточна. Для 12%-ных хромистых нержавеющих сталей, содержащих указанные легирующие элементы, ири закалке используют более высокие температуры нагрева (1050—1100 С), превышающие температуру Ас на 150—200 град. Следует, однако, отметить, что при таких более высоких температурах в структуре остается значительное (соответствующее содержанию углерода) количество карбидов титана или ниобия. Карбиды титана, ниобия, ванадия, в меньшей степени молибдена и вольфрама, уменьшают склонность сталей к росту зерна, однако эти элементы способствуют образованию б-феррита, что может оказать отрицательное влияние на механические свойства стали. В табл. 13 приводятся некоторые данные о свойствах наиболее часто встречающихся в таких нержавеющих сталях карбидов, образующихся в связи с введением в сталь указанных легирующих элементов.  [c.78]

На механические, физические и химические свойства стали большое влияние оказывают присадки легирующих элементов хрома, вольфрама, молибдена, ванадия, титана и др. Большинство специальных примесей и углерод повышают прокаливаемость стали, так как увеличивают устойчивость аустенита и замедляют процесс распада его при охлаждении. Основное влияние большинства специальных примесей и углерода заключается в том, что они снижают критическую скорость охлаждения и при определенном содержании могут вызвать закалку даже при охлаждении на воздухе. При сварке большинства легированных сталей вероятность образования мартенсита в наплавленном металле и в зоне термического влияния весьма высока, потому что скорость охлаждения после сварки довольно значительна и превышает скорость охлаждения на воздухе. Это является одним из основных затруднений при сварке легированных сталей.  [c.172]

Механические свойства хромоникелевых нержавеющих сталей аустенитного класса п-ри низких температурах зависят от химического состава стали и стабильности аустенита, определяемой положением точки мартенситного превращения. Эффективность действия ряда элементов на понижение температуры мартенситного превращения увеличивается в следующем порядке 51, Мп, Сг, N1, С, N. При рассмотрении влияния легирующих элементов на превращение аустенита в мартенсит необходимо учитывать только количество хрома и углерода, находящихся в твердом растворе, а не в карбидах. Стали с более стабильным аустенитом имеют и более высокие запасы ударной вязкости. В связи с этим аустенитные хромоникелевые стали типа 18-8 нашли широкое применение в криогенной технике.  [c.190]

Влияние легирующих элементов на пластичность и механические свойства сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента (фиг. 1 и 2). Ввиду различия в размерах атомов железа и легирующего элемента (табл. 1) растворение этих элементов приводит к изменению параметра решетки, пластичности и механических свойств.  [c.7]

Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]


Введение в сталь легирующих элементов улучшает ее механические свойства. Однако наилучшее сочетание свойств легированные конструкционные стали приобретают после упрочняющей термической обработки. В зависимости от условий работы деталей машин (зубчатые колеса, оси и валы, рессоры и пружины, подшипники и др.) сталь должна обладать тем или иным комплексом механических свойств. Различные стали по-разному удовлетворяют этим требованиям, причем для стали одного и того же назначения могут быть использованы разные легирующие элементы. Увеличение содержания легирующих элементов оказывает положительное влияние на свойства конструкционной стали до определенного предела, например, хрома — до 3%, марганца и кремния — до 1,5—2%, никеля — до 5%, молибдена и вольфрама — до 1—2%. При более высоком содержании легирующих элементов положительное влияние легирования на механические свойства стали уменьшается.  [c.169]

Применение легированных конструкционных сталей обусловливается тем, что углеродистая конструкционная сталь, хотя и обладающая достаточно высокими механическими свойствами, иногда не может удовлетворить предъявляемым к ней требованиям. Поэтому для ответственных деталей применяют легированные конструкционные стали, более высокие механические свойства которых по сравнению с углеродистыми сталями связаны с положительным влиянием легирующих элементов, углубляющих закалку, затрудняющих выделение карбидов при отпуске, измельчающих зерно и упрочняющих феррит.  [c.283]

Механические свойства и хладноломкость стали определяются прежде всего тремя механизмами упрочнения 1) измельчением зерна 2) упрочнением феррита атомами легирующих элементов и примесей, образующими твердые растворы внедрения и замещения 3) упрочнением выделениями частиц второй фазы различной степени дисперсности. Этот вид упрочнения называется дисперсионным. Влияние легирующих элементов на свойства стали  [c.261]

Высокие механические свойства среднелегированных сталей достигаются легированием элементами, упрочняющими феррит и повышающими прокаливаемость стали, и надлежащей термообработкой, после которой в полной мере проявляется положительное влияние легирующих элементов. Поэтому среднелегированные стали всегда характеризуются как химическим составом, так и видом термообработки. Среднелегированные стали, предназначенные для изготовления сварных конструкций, как правило, подвергаются улучшению (закалке с последующим высоким отпуском) или закалке и низкому отпуску (см. табл. 10-7).  [c.526]

Таким образом, влияние углерода и легирующих элементов на механические свойства стали после высокого и низкого отпуска существенно различно, что объясняется разным структурным состоянием стали.  [c.1133]

Влияние легирующих элементов на механические свойства (5,(, , Ор и Ог) стали после высокого отпуска показано на рис. 14.  [c.715]

Наиболее распространенными легирующими элементами при производстве низколегированных сталей являются 51, Мп, Сг, Мо. Анализ их влияния на кинетику превращения аустенита при охлаждении в условиях сварки можно провести по результатам работ [92—94 ]. Химический состав и механические свойства сталей представлены в табл. 6.9. Данные, характеризующие влияние легирующих элементов на характеристические длительности охлаждения и фазовый состав структуры, приведены на рис. 6.4.  [c.117]

Привести химический состав стали, отвечающей перечисленным требованиям, указать ее структуру и механические свойства и отметить влияние легирующего элемента на поведение стали при горячей механической обработке.  [c.353]

Исходя Из вышеизложенного, при разработке состава сталей для валков было понижено содержание углерода до 0,80—0,72%. В качестве основного легирующего элемента оставлен хром, оказывающий положительное влияние на прокаливаемость, износостойкость, устойчивость против перегрева и механические свойства. Содержание хрома в базовой стали понизили до 0,8—1,0% Таким образом, за основу в данных исследованиях принята сталь 75Х, очень близкая к эвтектоидному составу.  [c.80]

Отпуск оказывает значительное влияние на механические свойства легированной конструкционной стали повышает предел текучести, вязкость и пластичность при некотором снижении прочности. Интенсивность снижения прочности зависит от легирующих элементов. Кремний, кобальт, хром, молибден, вольфрам и ванадий задерживают снижение твердости и прочности.  [c.403]

Для изготовления деталей применяют сталь марки 40ХГТР. Расшифруйте состав стали и определите группу стали по назначению. Назначьте режим термической обработки. Приведите механические свойства стали после термической обработки. Объясните влияние легирующих элементов на превращения и свойства стали.  [c.155]

Известно, что для изготовления ответственных конструкций нефтегазовой отрасли часто используются низколегированные стали. Причем присутствие легирующих элементов сложным образом оказывает влияние на температуру хладноломкости металла. Кроме того, длительная эксплуатация трубопровода может привести к снижению пластических свойств стали в связи с возможным деформационным старением и соответственно к повышению порога хладноломкости. Поэтому в работе были проведены исследования влияния отрицательных температур на физико-механические свойства трубной стали 19Г, тем-плеты которой были отобраны с действующего газопровода. Были испытаны образцы, вырезанные из труб аварийного запаса и труб после 20 лет эксплуатации на выходе из газохранилища и в пяти километрах от него.  [c.10]


Влияние легирующих элементов на свойства стали. В изделиях крупных сечений (диаметром свыше 15—20 мм) механические свойства легированных сталей (Ов, ао,а, б, ф, КСи) значительно выше, чем механические свойства углеродистых сталей. Особенно сильно повышаются предел текучести, относительное сужение и ударная вязкость. Это объясняется тем, что легированные стали обладают меньшей критической скоростью закалки, а следовательно, лучшей прокаливаемЬстью. Кроме того, после термической обработки они имеют более мелкое зерно и более дисперсные структуры. Благодаря большей прокаливаемости и меньшей критической скорости закалки замена углеродистой стали легированной позволяет проводить закалку деталей в менее резких охладителях (масле, воздухе), что уменьшает деформацию изделий и опасность образования трещин. Легированные стали применяют поэ-  [c.259]

Вольфрам повышает пределы прочности и текучести стали при незначительном уменьшении относительного удлинения, повышает твердость н износостойкость ее. Особенно важно положительное влияние вольфрама на механические свойства сталей при повышенных температурах, повышение теплостойкости п стойкости против отпуска, поэтому вольфрам является главным легирующим элементом сталей для инструментов горячей обработки и быстрорежущих сталей. Отечественный ферровольфрам соответствует сам1.ш высоким требованиям (табл. 79). Выплавка ферровольфрама некоторых марок с молибденом объясняется присутствием R вольфрамовом концентрате некоторых месторождений значительного количества молибдена (2,0—4,5 /о).  [c.254]

В ряде работ отмечается косвенное влияние легирующих элементов на механические свойства закаленной и низкоотпу-щенной стали, главным образом за счет понижения начала мартенситного превращения [319—321].  [c.338]

К Цупакава и Н Уэхара предложили обобщенные эмпирические зависимости для определения влияния легирующих элементов на механические свойства высокопрочных мартенситно стареющих сталей типа Н18К8М5Т  [c.196]

Наибольшее влияние содержания углерода на механические свойства стали, наводороженной из газовой фазы высокотемпературным способом, наблюдается при его содержании около 0,9—1,0% [120]. При электролитическом наводороживании влияние легирующих элементов на склонность закаленной стали (0,3—0,45% С) к хрупкому разрушению исследовалось Я- М. Потаком [123]. Им установлено резко отрицательное влияние марганца на хрупкую прочность наводороженной стали. Эта отрицательная роль марганца проявилась как на образцах, закаленных в воду,так и на образцах, закаленных в масло. Образцы, закаленные в воду, при некотором содержании марганца хрупко разрушались при наводороживании стали даже при отсутствии внешней нагрузки, только в результате действия внутренних напряжений. Наиболее чувствительной к водородной хрупкости оказалась марганцовистая сталь 65Г при ее обработке до твердости HR 50. Все попытки устранить влияние наводороживания на прочность пружинных шайб Гровера, изготовляемых из этой стали при твердости, близкой к HR 48—ГО, положительных результатов не дали.  [c.88]

Вольфрам — дорогой и дефицитный легирующий элемент. Вольфр.ам растворяется в феррите и с углеродом образует карбиды, повьш1ает критические точки. При растворении в аустени-те вольфрам повышает прокаливаемость стали. Влияние вольфрама на механические свойства сравнительно невелико. Вольфр ам уменьшает рост зерна стали и чувств ителшость к отпускной хрупкости. Поэтому вольфрам в. количестве 0,8—1,2 /о используется как присадка к улучшаемым и цементуемым хро-моникелевьш сталям.  [c.279]

В настоящем разделе приведена общая характеристика хромоникелевых аустенитных сталей по химическому составу и механическим свойствам, а также кратко оовещены вопросы металлургии этих сталей с точки зрения влияния легирующих элементов. Последнее имеет значение при оценке свойств сталей и определения их соответствия условиям эксплуатации. Более подробное изложение металлургии этих сталей можно найти в специальной литературе, по данному вопросу ([1], [17], [25] и др.).  [c.6]

Обладая повышенной прокаливаемостью, более тонким строением, включениями прочных фаз в структуре и рядом других преимуигеств, определяемых влиянием легирующих элементов, легированная сталь приобретает после двойной термообработки — закалки и отпуска — более высокие механические свойства, чем углеродистая сталь. Диаграммы на фиг. 24—27  [c.119]

Применение сталей этого типа с пониженным содержанием никеля дает значительную экономию. Они обладают очень хорошими механическими свойствами и, прежде всего, высоким пределом текучести, достигающим в исходном состоянии 40 кгс мм (в два раза больше, чем у аустенитных сталей) [237]. Повышенную прочность этих сталей можно объяснить известным влиянием легирующих элементов в аусте-нпте и феррите. Так, например, предел текучести хромистых ферритных сталей повышается с увеличением содержания никеля. Наоборот, в аустенитных сталях никель снижает предел текучести. Учитывая состав обеих фаз [206], которых содержится в сплаве примерно по 50% (табл. 11), можно достигнуть приведенного выше предела текучести. Эти стали непригодны для глубокой вытяжки в холодном состоянии и для деталей, поверхность которых должна иметь высокий блеск. Оптимальные свойства этих сталей достигаются отжигом при температурах от 950 до 1050° С с последующим быстрым охлаждением.  [c.39]

Влияние легирующих элементов на механические свойства стали после низкого и высокого отпуска существенно различно. Прииципиально различный характер влияния объясняется различным структурным состоянием стали в первом и втором случае.  [c.714]

Свойства 13 о-ной хромистой стали типа 1X13. На фиг. 28 показано [47] влияние содержания углерода и хрома в пределах, принятых для стали 1X13, на твердость после различной термической обработки. Влияние легирующих элементов Сг, Si, Ni, Мп и N на механические свойства описано в работах [51 ], [52].  [c.674]

Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

Легирующие элементы — хром, никель, молибден, вольфрам, медь и титан — оказывают влияние на литейные свойства, резко повышают механические качества и дают возможность получения отливок из конструкционной мало- и среднелегн-рованной стали с кислотостойкими, жаропрочными, антикоррозионными и прочими свойствами.  [c.114]

Влияние отпуска на механические свойства. Распад мартенсита при отпуске влияет на все свойства стали. При низких температурах отпуска (до 200—250 °С) уменьшается склонность стали к хрупкому разрушению. В случае низкотемпературного отпуска твердость закаленной и отпущенной стали мало зависит от содержания в ней легирующих элементов и определяется в основном содержанием углерода в а-растворе (мартенсите). В связи с этим высокоуглеродистые стали, имеющие высокую твердость после закалки, сохраняют ее (более высокое содержание углерода в мартенсите) и после отпуска при температурах до 200— 250 °С. Прочность и вязкость стали при низких температурах отпуска несколько возрастает вследствие уменьшения макро- и микронапряжений и изменения структурного состояния. Повышение температуры отпуска от 200—250 до 500—600 °С заметно снижает твердость, временное сопротивление, предел текучести и повышает относительное удлинение, сужение (рио. 128, а) и трещиностой-кость Кхс-  [c.187]


К составу связки предъявляется ряд требований 1) хорошее смачивание карбвд титана 2) наличие элементов, обеспечивающих раскисление сталей, не ухудшая при этом смачиваемость карбида титана. Наиболее часто в качестве легирующих элементов связки используются никель, хром и молибден, влияние которых на физико-механические свойства карбидостали представлено в та . 48 [159] ина рис. 61 [160].  [c.113]


Смотреть страницы где упоминается термин Механические свойства сталей и влияние легирующих элементов : [c.87]    [c.406]    [c.2]    [c.277]    [c.50]    [c.174]    [c.62]    [c.27]   
Смотреть главы в:

Металловедение Издание 4 1966  -> Механические свойства сталей и влияние легирующих элементов



ПОИСК



141 — Влияние на свойства

Влияние Влияние на свойства стале

Влияние легирующее

Влияние легирующих элементов на механические свойства

Влияние легирующих элементов на свойства сталей

Легированная Механические свойства

Легирующие Влияние на свойства сталей

Легирующие элементы

Механические легированная - Механические свойств

Механические свойства легированных сталей

Сталь Влияние

Сталь Влияние легирующих элементов

Сталь Механические свойства

Сталь Механические свойства — Влияние

Сталь Свойства

Сталь легированная

Сталь легированная 103, 104, 107 — Свойства

Сталь элементов

Сталя легированные

Элементы Свойства

см Свойства — Влияние легирующих

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте