Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

см Свойства — Влияние легирующих

Подробно о влиянии легирующих элементов на структуру и свойства см. Влияние легирующих элементов на свойства стали"  [c.383]

Влияние легирующих элементов на свойства фаз подробно рассмотрено в гл. 5 (см. с. 218).  [c.294]

Высокие механические свойства среднелегированных сталей достигаются легированием элементами, упрочняющими феррит и повышающими прокаливаемость стали, и надлежащей термообработкой, после которой в полной мере проявляется положительное влияние легирующих элементов. Поэтому среднелегированные стали всегда характеризуются как химическим составом, так и видом термообработки. Среднелегированные стали, предназначенные для изготовления сварных конструкций, как правило, подвергаются улучшению (закалке с последующим высоким отпуском) или закалке и низкому отпуску (см. табл. 10-7).  [c.526]


Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Как правило, легирующие элементы, являющиеся /3-стабилизатора-ми, повышают прочность, жаропрочность и термическую стабильность титановых сплавов, несколько снижая их пластичность (см. рис. 14.6). Кроме того, они способствуют упрочнению сплавов с помощью термической обработки. Наиболее благоприятное влияние на свойства титановых сплавов оказывают Мо, V, Сг, Мп.  [c.413]

Данные, полученные при изучении сплава ВТ9, показывают, что специфическое влияние СПД на микроструктуру и свойства сплава не только сохраняется, но даже усиливается при прохождении последующей фазовой перекристаллизации. Такой вывод сделан на основании того, что после СПД и ОБД алюминиевых и магниевых сплавов не наблюдается существенного различия в свойствах, как у сплава ВТ9. Наконец, выполненное исследование благодаря большому набору структурных состояний в сплаве позволяет сделать заключение о причинах, обусловливающих термическую нестабильность сплава. Она наблюдается при деформации сплава с пластинчатой микроструктурой со скоростями, большими оптимальных при СПД (см. табл. 17). Микроструктура сплава после такой обработки характеризуется наибольшей структурной и химической неоднородностью, обусловленной незавершенностью преобразования пластинчатой микроструктуры в равноосную, а также незавершенностью процессов перераспределения легирующих элементов при деформации (см. выше). По-видимому, эти факторы и обусловливают изменение характера старения сплава  [c.215]

При исследовании влияния РЭ на свойства металла шва часто требуется оценить, как этот элемент может воздействовать на свойства основного металла. С этой целью необходимо выполнять шов ПДС сваркой неплавящимся электродом с применением легирующей вставки с высокой концентрацией РЭ, позволяющей уменьшить разбавление металла шва другими элементами, и исследовать свойства основного металла на таких же образцах (см. рис. 43,а), какие использовали для испытания металла шва. В этом случае сопоставление показателей состава и свойств основного металла с соответствующими показателями состава и свойств металла шва на участке II постоянного состава (без дополнительного введения РЭ) дает возможность количественно определить влияние процесса сварки на эти показатели металла, а данные по влиянию РЭ на свойства металла шва на участках III и IV позволят качественно или полуколичественно оценить влияние этого элемента и на свойства основного металла.  [c.45]


В состав применяемых в настоящее время нержавеющих сталей и сплавов наряду с хромом, алюминием и никелем входят в различном сочетании марганец, кремний, вольфрам, кобальт и другие элементы. Такие стали и сплавы в различной степени чувствительны к термическому воздействию при нагреве, что в значительной мере затрудняет установление технологического режима резки. Это обусловливается следующими свойствами сталей. Теплопроводность, как правило, уменьшается с увеличением степени легирования стали и числа легирующих элементов. С повышением содержания углерода теплопроводность понижается. Аналогичное влияние оказывает кремний и марганец. Особенно сильно снижают теплопроводность хром и никель. Кроме того, в некоторые марки сталей входят два и более легирующих элемента, суммарное действие их сильнее, чем одного из них в таком же количестве. Так, например, теплопроводность аустенитных сталей при 540° колеблется в пределах 0,01984—0,02025 кал/см- сек- град. Значения коэффициента теплопроводности для мартенситных и ферритных нержавеющих сталей колеблется в пределах 0,02187— 0,02284 кал[см сек град, причем эти значения уменьшаются с увеличением содержания хрома от 12 до 26%. С другой стороны, теплопроводность обычной углеродистой стали составляет более 0,0405 кал/см сек град, а теплопроводность низколегированных сталей, содержащих до 5% Сг, немного ниже.  [c.23]

Хромоникелевая конструкционная сталь, имеющая широкое применение в промышленности (см. табл. 7 и 8), представляет собой пример удачного сочетания влияния различных легирующих элементов на структуру и свойства стали. Отличительной особенностью хромоникелевых марок стали является их высокая прокаливаемость, способность к значительному упрочнению под влиянием термической и химикотермической обработки при сохранении высокого уровня свойств пластичности и вязкости.  [c.116]

На фиг. 248 показаны изменения свойств феррита (твердость, ударная вязкость) при растворении в нем различных элементов. Как видно из диаграмм, хром, молибден, вольфрам упрочняют феррит меньше, чем никель, кремний и марганец. Молибден, вольфрам, а также марганец и кремний (при наличии последних более 1%) снижают вязкость феррита. Хром уменьшает вязкость значительно слабее перечисленных элементов, а никель не снижает вязкости феррита. Важное значение имеет влияние элементов на порог хладноломкости, что характеризует склонность стали к хрупкому разрушению. Наличие хрома в железе способствует некоторому повышению порога хладноломкости, тогда как никель интенсивно снижает порог хладноломкости, уменьшая тем самым склонность железа к хрупким разрушениям (см. ниже фиг. 256). Таким образом, из перечисленных шести наиболее распространенных легирующих элементов особенно ценным является никель. Достаточно интенсивно упрочняя феррит, никель не снижает его вязкости и понижает порог хладноломкости, тогда как другие элементы, если и не снижают вязкости, то слабо упрочняют феррит (хром), либо, сильно упрочняя феррит, резко снижают его вязкость (марганец, кремний).  [c.248]

Ф-ла (ч ) применима и для описания Т. э. из полупроводников. Однако влияние темп-ры, электрич. поля, примесей в эмиттере и т. п. на эмиссионный ток и на величины Ф и Л в этом случае существенно иное, чем в металлах. Различия обусловлены малой концентрацией эл-нов проводимости и наличием локализованных поверхностных электронных состояний, влияющих на расположение уровня Ферми р для поверхности ПП, вплоть до его закрепления в нек-рой точке запрещённой зоны (см. Поверхностные свойства полупроводников). При этом ни /г на поверхности ПП, ни Ф не зависят от 8р ь объёме (т. е. от типа и концентрации легирующей примеси),, Такое закрепление реализуется обычно в кристаллах с ковалентной связью (Се, 81 и др.), и в этом случае хар-р Т. э. такой же, как Т. э. из металлов. На чистых поверхностях ионных кристаллов структура поверхностных состояний такова, что уровень Ферми на поверхности может перемещаться внутри запрещённой зоны, следуя за его положением в объёме. Поэтому при изменении типа и концентрации примесей в объёме ПП изменяются Ф и ток Т. э. Кроме того, электрич. поле в таких ПП не экранируется зарядом поверхностных состояний, а проникает в эмиттер на значит, глубину.  [c.757]


Легированию обычно подвергается качественный чугун, так как низкокачественная шихта не может быть исправлена даже высоким легированием. При легировании чугуна учитывается взаимное влияние химических элементов в отношении эквивалентности сил графи-тизации (см.,Основныехарактеристики свойств чугуна ). Из легирующих элементов особое значение имеют никель и хром.  [c.49]

Ti 2,7% Мп 9,7% Со 2,6% Си. Выплавленные стали гомогенизировали при 1150°С в течение 16 ч. Выбор сталей мартенситного, а не переходного класса в настовдем исследовании не является случайным. В этих сплавах после закалки от 900-1000°С в воде образуется практически одинаковое и достаточно большое количество мартенсита (85-95%), что позволяет сравнить влияние легирующих элементов на фазовый наклеп аустенита (испытание свойств фазонаклепанного аустенита проводилось выше Мд - при 350°С на образцах диаметром 6 мм). Исследованные стали содержали пакетный мартенсит, аналогичный мартенситу нержавеющих сталей с Мн<Оо (см. раздел 3.2). Определение влияния легирования на фазовый наклеп в аустенитных метастабильных сталях представляло бы, несомненно, более трудную задачу из-за необходимости получения одинакового и большого количества мартенсита при обработке холодом.  [c.213]

Легированные стали представляют собой сложные системы с числом компонентов, доходящим до 7. Практически невозможно обсуждать фазовый состав и свойства таких сложных систем по соответствующим диаграммам состояния. Поэтому приходится рассматривать влияние легирующих элементов на структуру и свойства сталей и вообще сплавов иа основе железа с нескольких позиций. Прежде всего следует проследить влияние легирующих элементов на положение некоторых критических точек диаграммы состояння двойной системы железо — углерод (см. рис. 46). Установлено, что все легирующие элементы сдвигают эвтектоидную точку 5 диаграммы состояния системы железо — углерод в область меньших концентраций углерода. Точно такое же действие они оказывают на точку Е, соответствующую наибольшей растворимости углерода в аустените. Это значит, что доэвтектондная углеродистая сталь при введении легирующих элементов может стать заэвтектоидной, а в за-эвтектоидной стали может появиться ледебуритная эвтектика. Наиболее сильное действие на смещение точек 5 и оказывают вольфрам и кремний.  [c.176]

Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии.  [c.12]

Принципиально новое направление в области обработки пружинных сталей — использование обратного мартенситного превращения с последующим старением аустенита Таким образом можно получить немагнитные пружинные стали с повышенным комплексом прочностных свойств (см, стр. 49). Стали этого типа с П—14% Ni и 10% Сг дополнительно легированы для создания вторичных упрочняющих фаз титаном (1—1,5%) и алюминием ( 0,5—1%), а в некоторых случаях также и вольфрамом для стабилизации субструктуры. После нагрева при 1000° С и охлаждения сталь приобретает аустенитную структуру, которая в результате сильной холодной пластической деформации превращается в мартенсит, имеющий высокую плотность -дефектов строения в результате фазового и деформационного наклепа. Мартенсит при нагреве превращается В аустенит (обратное мар-тенситное превращение), который сохраняется после охлаждения до нормальной температуры. Этот аустенит обладает повышенной плотностью дефектов строения, наследуемых от прямого мартенситного превращения, деформации и обратного мартенситного превращения и создающих измельченную рубструктуру. При последующем старении (520° С) аустенит упрочняется вследствие выделения избыточных фаз, причем характер изменения предела упругости при изотермическом старении аналогичен н людае-мому при старении мартенситностареющих сталей. Это означает, что решающее влияние на закономерности упрочнения оказывает не тип кристалической решетки, а субструктура матричной фазы.  [c.37]

Некоторые легирующие элементы стабилизируют аустенит, другие — феррит, поэтому добавки таких стабилизаторов аусте-нита, как никель и марганец, должны способствовать сохранению аустенитной матрицы (см. рис. 7.5). Простейшая аустенитная сталь AISI 316 содержит молибден, который, будучи растворен в аустените, способствует увеличению предела ползучести. Пределы ползучести и прочности таких сталей сильно зависят от температуры и времени. Кроме того, в них не наблюдаются реакции, сопровождающиеся выделением других фаз и нежелательным изменением структуры и свойств зон термического влияния сварки.  [c.60]


Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

Повышение содержания вольфрама до 8—10% (сталь марки W2) приводит отчасти путем увеличения степени легированностн твердого раствора, отчасти путем увеличения количественного содержания карбидов к большей твердости, устойчивости против отпуска и теплостойкости по сравнению со сталью марки W3 (см. рис. 213 и 214). Повышение теплостойкости и устойчивости против отпуска по сравнению со сталями марок К13 —К14 приблизительно до температуры 600 С минимально, однако при более высоких температурах становится уже заметным (см. рис. 214). Значительная часть карбидов не растворяется даже при повышенных температурах нагрева при закалке. Например, при температуре 1100° С около 6% карбидов остаются нерастворенными. Вследствие большего (приблизительно 15%) содержания карбидов меньше остается возможностей для равномерного их распределения, поэтому вязкие свойства сталей таких типов хуже. Между измеренными значениями ударной вязкости по краям и в середине инструментов больших сечений можно наблюдать все более увеличивающую разницу (анизотропию). Такую разницу в небольшой степени можно обнаружить и в теплостойкости. Влияние времени выдержки при нагреве, скорости охлаждения и условий отпуска на механические свойства инструментальной стали марки W2 приведено в табл. 118. От скорости охлаждения при закалке в большой степени зависят вязкость и содержание легирующих компонентов в твердом раство-  [c.272]

Опыт применения двухфазных (а + у)-сплавов показал большое рассеяние свойств, причины которого неясны. Исследование характера разрушения железомарганцевых а-сплавов проводили на бинарных и легированных составах. Механические свойства бинарных сплавов с 7 и 10% Мп подробно исследованы ранее (см. гл. I, III) и взяты для сравнения. В качестве легирующих были использованы ванадий и ниобий. При этом ожидали улучшения вязких свойств по двум направлениям через измельчение зерна и повышение чистоты в микрообъемах металла [153]. Сведения по благоприятному влиянию этих элементов на фазовый состав и далее на пластичность и вязкость железомарганцевых сплавов были получены ранее на е-спла-вах [153]. Кроме того были воспроизведены сплавы 20Г7Т и 17Х2Г8МФ, известные из литературных источников [13, 184].  [c.225]


Смотреть страницы где упоминается термин см Свойства — Влияние легирующих : [c.185]    [c.285]    [c.221]    [c.138]    [c.272]    [c.570]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



141 — Влияние на свойства

Влияние легирующее

Влияние легирующих и модифицирующих элементов на свойства белых износостойких чугунов

Влияние легирующих компонентов на свойства сталей

Влияние легирующих элементов и примесей на дислокационную структуру и свойства стали

Влияние легирующих элементов на механические свойства

Влияние легирующих элементов на механические свойства титана

Влияние легирующих элементов на механические свойства титановых сплавов при криогенных температурах

Влияние легирующих элементов на превращения и свойства стали

Влияние легирующих элементов на различные свойства стали при термической обработке

Влияние легирующих элементов на свойства 17-ных хромистых сталей

Влияние легирующих элементов на свойства жаропрочных и жаростойких сталей

Влияние легирующих элементов на свойства медных сплавов

Влияние легирующих элементов на свойства сталей

Влияние легирующих элементов на свойства стали

Влияние легирующих элементов на свойства стали и сплавов

Влияние легирующих элементов на свойства титановых сплавов после закалки и старения

Влияние легирующих элементов на свойства феррита

Влияние легирующих элементов на свойства хромистых нержавеющих сталей

Влияние легирующих элементов на строение и свойства стали

Влияние легирующих элементов на структуру и свойства сталей

Влияние легирующих элементов на структуру и свойства стали

Влияние легирующих элементов на структуру и свойства титановых сплавов

Влияние легирующих элементов на структуру, фазовые превращения и свойства конструкционных сталей

Влияние примесей и легирующих присадок на структуру и свойства хромоникелевых аустенитных сталей

Влияние примесей и легирующих элементов на магнитные и технологические свойства сплавов

Железохромистые сплавы — Свойства — Влияние легирующих элементов 220, 221 — Свойства и структура — Влияние хрома

ЗАКАЛЕННАЯ из легированной стали конструкционной улучшаемой — Размеры — Влияние на механические свойства

Испытания стали легированной конструкционной — Температуры Влияние на механические свойств

Легированная Термическая обработка — Режимы Влияние на механические свойств

Легированные стали и влияние условий эксплуатации на их свойства Влияние легирующих элементов на свойства стали

Легирующие Влияние на свойства бров

Легирующие Влияние на свойства латуне

Легирующие Влияние на свойства меди

Легирующие Влияние на свойства сплавов

Легирующие Влияние на свойства сталей

Легирующие Влияние на свойства чугун

Легирующие компоненты — Влияние на свойства стали и чугуна

Легирующие элементы в сталях - Наименования 25,26 - Влияние на полиморфизм железа 26,27 - Классификация 26 - Влияние на свойства

Легирующие элементы влияние на структуру и свойства

Легирующие элементы и их влияние на свойства сталей и чугунов

Легирующие элементы — Влияние на свойства стального литья

Мартенсито-ферритные и мартенситные стали 2 Влияние основных легирующих элементов на свойства хромистых нержавеющих сталей

Механические свойства сталей и влияние легирующих элементов

Механические свойства стали, влияние структуры и легирующих элементов

Отпуск легированной конструкционной Температуры — Влияние на механические свойства

Отпуск легированной конструкционной цементуемой — Температуры — Влияние на механические свойства

Предметно-алфавитный Свойства —Влияние легирующих

Распределение легирующих элементов и их влияние на свойства стали

Стали коррозионно-стойкие сероводородостойкие конструкционные - Классификация 251 - Механические свойства после термообработки 252 - Предел выносливости 253 - Влияние примесей и легирующих элементов на свойства 254 - Влияние

Феррит Механические свойства - Влияние легирующих элементов

Чугун легированный кремнистый - Влияние содержания элементов на свойства



© 2025 Mash-xxl.info Реклама на сайте