Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение ЭВМ в системах автоматического управления

ПРИМЕНЕНИЕ ЭВМ В СИСТЕМАХ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ  [c.881]

В последние годы созданы системы автоматического управления конвертерной плавкой с применением электронных вычислительных машин (ЭВМ). С этой целью разработаны математические модели процесса, основанные на тепловом и материальном балансах плавки. На основе математического описания процесса создается программа (алгоритм) для ЭВМ. В ЭВМ вводят исходные данные о составе чугуна, флюсов и охладителей, количестве сыпучих, температуре чугуна, чистоте кислорода, основности конечного шлака, составе и температуре готовой стали и т. д. Машина на основании полученной информации и уравнений математической модели процесса прогнозирует ход плавки, рассчитывает количество и время присадок, расход кислорода на плавку и момент окончания продувки, рассчитывает и вводит в ковш необходимое количество раскислителей.  [c.141]


Применение ЭВМ в металлообрабатывающих станках определило современный этап автоматизации производственных процессов в машиностроении. ЭВМ встраивают в системы числового программного управления отдельным станком, группой станков, станочным модулем, автоматической линией. Если вначале ЭВМ использовали лишь для интерполяции сигналов программы, то теперь ЭВМ решает широкий круг задач управления хранит программы обработки деталей на различных станках, производит коррекцию сигналов управления в соответствии с сигналами датчиков обратной связи, обеспечивает диагностику неисправностей и т. д. На базе ЭВМ создаются гибкие производственные системы.  [c.3]

Более совершенными в следующем десятилетии станут средства распознавания речи и системы технического зрения. Терминалы ЭВМ будут оснащены устройствами речевого ввода, что существенно ускорит процесс ввода данных. Мы уже касались вопросов речевого ввода, рассматривая программирование систем числового программного управления в гл. 9. В будущем устройства речевого ввода войдут в комплект оборудования САПР/АПП. Как отмечалось в гл. 19, системы технического зрения найдут широкое применение в системах автоматического контроля. Кроме того, техническое зрение будет широко использовать-  [c.517]

В связи с ускорением внедрения в системы ЦПУ электронной вычислительной техники созданы специализированные управ-ляюще-логические машины для автоматизации управления циклами работы технологического оборудования. Например, для управления автоматическими линиями и другими сложными технологическими процессами обеспечивается увеличение применения управляющих ЭВМ.  [c.304]

Оборудование с функциональными системами программного управления, обеспечивающими управление режимом обработки (главным приводом и приводом подач), последовательностью работы механизмов станка, предельными перемещениями по ося 1 координат. К этой группе относятся автоматические линии для механической обработки, у которых повышается коэффициент использования за счет применения электронного управления циклами работы, счетчиков работы инструментов с одновременным использованием центральной ЭВМ для диагностики и планирования работы всего комплекса автоматы и агрегатные станки с переналаживаемыми циклами работы, пригодные к использованию в крупносерийном производстве токарно-револьверные станки с автоматическим циклом работы, задаваемым электронной системой управления.  [c.379]


Гибкие автоматические линии отличает более широкое применение средств вычислительной техники для управления работой оборудования и диагностики технического состояния, в том числе его переналадки, а также связь индивидуальных систем управления отдельным оборудованием в единую систему, управляемую от ЭВМ. Последующим этапом развития автоматизации стали гибкие производственные системы (ГПС) и их элементы — гибкие производственные модули (ГПМ).  [c.281]

Однако сфера применения микро-ЭВМ не ограничивается только децентрализованными автоматизированными системами. Они все более широко используются в качестве автономных вычислителей в различных измерительных и управляющих устройствах. Начиная с 1975 г. в промышленность стали поступать цифровые регуляторы и программируемые системы управления. Один цифровой регулятор, как правило, может выполнять функции нескольких аналоговых. Обычно на его входе ставится аналого-цифровой преобразователь, поскольку пока в основном применяются датчики, усилители и линии связи аналогового типа. Для того чтобы регулятор мог приводить в действие исполнительные устройства с аналоговым входом, он снабжается выходным цифро-аналоговым преобразователем. Вероятно, в будущем будет освоен выпуск оцифрованных датчиков и исполнительных устройств. Это позволит не только обойтись без аналого-цифровых и цифро-аналоговых преобразователей, но и устранить ряд источников помех, а также даст возможность осуществлять предварительную обработку сигналов в цифровых измерительных устройствах (например, с целью выбора наилучшего диапазона измерений, компенсации нелинейностей, автоматического выявления неисправностей и т. д.). Что же касается исполнительных устройств с цифровым входом, то уже сейчас выпускаются, например, шаговые электроприводы.  [c.8]

В ближайшие годы в машиностроении предусматривается значительное расширение автоматизации производственных процессов, что позволит не только повысить качество продукции и снизить ее себестоимость, но и высвободить рабочую силу. Автоматизация должна проводиться не только в массовом, но также в серийном и единичном производстве. Основой для ее осуществления должны быть точные технико-экономические расчеты. В массовом и серийном производстве найдут широкое применение полуавтоматы и автоматы, агрегатные станки, автоматические линии и системы машин, обеспечивающих механизацию и автоматизацию всех процессов производства, и особенно вспомогательных, транспортных и складских операций. Большое внимание будет уделено переналаживаемым средствам автоматизации и средствам групповой обработки. В единичном и мелкосерийном производстве будут широко использоваться станки с программным управлением, в том числе многооперационные станки. Найдут широкое применение механизированные и автоматизированные технологические комплексы с автоматической системой управления от ЭВМ. Будет существенно снижен объем ручного труда. Получат большое распространение на всех участках производства автоматические манипуляторы с программным управлением в целях механизации и. автоматизации тяжелых физических и монотонных работ. Развитие автоматизации вызовет разработку новых структурных схем и компоновок оборудования, а также дальнейшее совершенствование режущих инструментов и средств технического контроля.  [c.412]

Современные печи работают в автоматическом режиме. Правильность хода технологического процесса контролируют по результатам экспресс-анализа сплава, электрическому режиму работы печи, внешним признакам работы печн и летки, по составу, количеству и параметрам газа на закрытых печах, физическому состоянию и химическому составу выходящего со сплавом шлака. Новым является освоенное на заводе в г. Аштабьюле (США) управление мощными печами с применением ЭВМ. Для диалога оператора с машиной служат пульт управления с дисплеем и печатное устройство. Для ввода данных о состоянии технологического оборудования или переменных параметров процесса используют цифровые и аналоговые устройства. Аналоговые входные устройства сигнализируют о величине тока и напряжения, расходе материалов, температуре, давлении п составе газа и др. ЭВМ осуществляет управление всеми основными параметрами работы печей, механизмом перепуска электродов и в нормальном режиме и при ликвидации аварий, рассчитывает момент выпуска плавки, управляет дозировкой шихты и се подачей на печи, работой газоочистки и т. д. Система сигнализирует оператору о всех отклонениях параметров от установленных пределов и выходе из строя оборудования и выдает всю необходимую технологическую информацию, в том числе ежесуточно вычисляет себестоимость продукции и показатели работы печи.  [c.97]


Наиболее универсальными автоанализаторами являются аналитические установки, программируемые с помощью мини-ЭВМ и микропроцессоров. Подобные автоматы имеют программы, рассчитанные на выполнение определенных видов анализов (до нескольких десятков видов). Оператор может по своему выбору установить режим работы, обеспечивающий проведение любого из анализов или любой их комбинации. Селективно программируемые автоанализаторы строятся как по поточной, так и по дискретной схеме. При этом во многих областях анализа господствующие позиции и по количеству моделей, и по объему выпуска занимают дискретные автоматы, хотя поточный способ реализации аналитического процесса имеет ряд достоинств. Благодаря наличию перистальтических насосов в поточных автоанализаторах упрощены дозирование исследуемой жидкости и реагентов, а также подача разделительных воздушных прослоек между пробами, синхронизация всех технологических операций без специального блока программного управления. Применение диализа в протоке упрощает отделение от пробы высокомолекулярных соединений и коллоидных частиц. Вследствие того, что реакционные смеси и реагенты циркулируют во время анализа в герметичных системах трубопроводов, исключены поступление в атмосферу лаборатории токсичных испарений и загрязнение извне рабочих сред в процессе исследований. Перемешивание обеспечивается простейшим способом — с помощью спиралеобразных смесительных трубок. Переход от одной методики к другой может быть осуществлен заменой стандартных блоков. Наконец, поточный способ самым органичным образом сочетается с хроматографическим анализом на колонках, что используется в автоматических хроматографах.  [c.51]

Большое внимание уделяется автоматическому управлению поточно-транспортных систем, радиоуправлению кранами, автоматизации управления контейнерными кранами, применению ЭВМ для управления транспортными узлами и конвейерными системами, а также максимальной унификации и стандартизации узлов и деталей электродвигателей, аппаратов, коммутационной аппаратуры и схем. Перечисленные направления не исчерпывают всех тенденций в развитии и совершенствовании электрообрудования подъемно-транспортных машин, а только определяют главнейшие из них.  [c.4]

В разд 8.9 мы уже обсуждали речевой метод программирования станков с числовым программным управлением. Другим примером речевого общения человека с вычислительной машиной является ввод данньхх в производственных информационных системах. Эту технологию иногда называют автоматическим распознаванием речи она символизирует попытку упрощения человеко-машинного интерфейса. При некоторых обстоятельствах речевой ввод данных в ЭВМ оказывается наиболее простым и быстрым. Среди примеров применений метода на производстве можно назвать контроль качества, управление запасами и идентификацию деталей. В перспективе применение речевого ввода данных возможно и в системе сбора информации о выполнении заказов.  [c.406]

При проектировании операций обработки на станках с программным управлением на первом этапе разрабатывают технологический процесс обработки заготовки, определяют траекторию движения режущих инструментов, увязывают ее с системой координат станка и с заданной исходной точкой и положением заготовки, устанавливают припуски на обработку и режимы резания. На этом этапе определяют всю предварительную обработку заготовки, ее базы и необходимую технологическую оснастку. В конце первого этапа составляют расчетно-технологическую карту (РТК) с чертежом, на котором вместе с контуром детали наносят траекторию движения инструмента. На втором этапе рассчитывают координаты опорных точек траектории от выбранного начала координат, производят аппроксимацию криволинейных участков профиля детали ломаной линией с учетом требуемой точности обработки устанавливают скорости движения инструмента на участках быстрого перемещения, замедленного подвода к детали и на участках обработки определяют необходимые команды (включение и выключение подачи, изменение скорости движения, остановы, подачу и выключение охлаждающей жидкости и др.), продолжительность переходов обработки и время подачи команд. Второй этап наиболее трудоемок. При обработке сложных деталей он выполняется с использованием электронно-вычислительных машин для простых деталей применяют настольные клавищные машины. На третьем этапе оператор-программист кодирует технологическую и числовую информацию с помощью ручного перфоратора и записывает ее на перфоленту. Для сложных деталей эта работа выполняется на электронновычислительной машине. При использовании станков с магнитной лентой информация с перфоленты записывается на магнитную ленту с помощью интерполятора, установленного вне станка. Применение систем автоматического программирования уменьшает время подготовки управляющих программ в 30 раз, а себестоимость их выполнения в 5—10 раз. В системе управления несколькими станками от одной ЭВМ блок памяти используется как централизованная управляющая программа ЭВМ управляет также работой крана-штабелера на промежуточном складе, а также работой роботов-манипуляторов, обслуживающих станки (для установки и снятия обрабатываемых заготовок). В функции ЭВМ входит также диспетчирование работы участка станков и учет производимой продукции. Применение этих систем позволяет уменьшить число работающих и радикально изменяет условия труда в механических  [c.265]

Внедрение централизованных систем автоматического управления движением поездов начиналось на Московском, Ленинградском, Харьковском и Ташкентском метрополитенах. Это объясняется небольшой протяженностью линий и соответственно каналов связи, однотипностью подвижного состава, относительной простотой управления поездом, изолированностью от внешних воздействий. На магистральных железнодорожных линиях обращаются разнотипные грузовые, пригородные и пассажирские поезда с различными временами хода, допускаемыми скоростями движения, режимами ведения. Выполнить централизованные системы в этих условиях значительно сложнее. Вследствие большой протяженности линий увеличивается объем и стоимость аппаратуры передачи данных, необходимость управлять движением разнотипных поездов вызывает резкое увеличение объема информации, а это повышает требования к быстродействию управляющих ЭВМ, ведет к увеличению их числа. Выбор режима ведения пассажирского или пригородного и в особенности грузового поезда -сложная многовариантная задача. Совершенствование систем автоведения и расширение их возможностей вплоть до учета меняющихся условий на участке возможны на базе применения микропроцессоров, с помощью которых можно самостоятельно решать задачу ведения поезда, повысить надежность работы всей системы.  [c.82]


Автоматизированная система управления является частным случаем системы управления, в которой помимо двух понятий система и управление синтезируется понятие автоматизации зшравленческих функций и процессов. Автоматическое управление, при котором автоматизируются все управленческие процессы и операции, возможно только при управлении техническими (жстемами. В системах управления производством, где объектом управлего1я являются люди, автоматическое управление принципиально невозможно, поэтому там создаются автоматизированные системы управления. Автоматизированные системы управления представляют собой человеко-машинные системы, в которых управление осуществляется человеком с помощью ЭВМ и других средств. Задачи, решаемые на ЭВМ, требуют формализации. Поэтому внедрение ЭВМ сопровождается широким применением экономикоматематических методов и моделей, облегчающих формализацию и дающих возможность выработать оптимальные решения сложных задач.  [c.78]

Тенденции в развитии нового оборудования в значительной степени определяются сегодняшними и будуш,ими нуждами предприятий-потребителей. Поэтому изучение этих нужд позволяет установить перспективы создания прогрессивного автоматизированного оборудования и автоматизированных участков и цехов с применением станков с программным управлением, станочных и транспортных роботов с электронной системой управления, автоматических складов-накопителей и передаточных устройств с управлением всем комплексом оборудования с помощью ЭВМ.  [c.23]

Таким образом, конвейерный транспорт с автоматическим распознаванием и адресованием деталей обладает рядом преимуществ. Во-первых, система управления такого конвейера, реализуемая на базе микропроцессоров и микроЭВМ, легко сопрягается с управляющими ЭВМ более высокого уровня, образуя единую автоматизированную систему управления производством (АСУП), Во-вторых, применение микроЭВМ для управления конвейером позволяет оптимизировать распределение и адресацию грузов по производственным участкам ГАП. В-третьих, благодаря распознаванию деталей автоматически осуществляется их учет и обеспечивается возможность переключения программ, управляющих оборудованием ГАП, установленным на позициях с соответствующим адресом, в зависимости от того, к какому классу принадлежит транспортируемая деталь. В последнеее время в ГАП все щире начинают применяться подвесные манипуляторы тельфер-ного (с перемещением по монорельсу) и портального типов. Эти транспортные манипуляторы, как и подвесные конвейеры, размещаются над технологическим оборудованием, что позволяет экономить производственные площади. Наиболее совершенные  [c.226]

Одним из основных направлений применения средств вычислительной техники в производстве является создание автоматической системы управления технологическими процессами (АСУ ТП). В машиностроении основной областью применения микропроцессоров и микро-ЭВМ являются станки с числовым программным управлением (ЧПУ), робототехника и изме1рительная техника, где в настоящее время ведутся работы по замене электронных приборов микропроцессорами. Например, ЭВМ применяются в КИМ для проведения измерений в соответствии с заданной пропраммой, для обработки результатов измерений и выработки измерительной информации. Цифровая индикация результатов измерений повышает точность и производительность измерений и облегчает труд контролера.  [c.211]

Автоматизированные системы контроля (АСК) и испытаний (АСИ) являются естественным развитием вышеописанных методов контроля и испытаний. Но в отличие от этих методов, традиционно реализовывавшихся вручную (с применением калибров, измерительных устройств и испытательной аппаратуры), автоматизированные системы контроля и испытаний функционируют автоматически и основываются на использовании последних достижений в области вычислительной техники и измерительных преобразователей. АСК и АСИ на базе ЭВМ являются лишь подсистемами (и весьма важными) автоматизированной системы управления качеством (АСУК). Предлагаемый нами подход заключается в реализации функций контроля качества в рамках системы автоматизированного проектирования и производства (САПР/АПП), что является необходимым условием успешного функционирования АСУК. Сами по себе АСК и АСИ-это примеры так называемой островковой автоматизации . Они являются автономными системами. Однако без включения их в состав АСУК последняя не будет вьшолнять свои функции в полном объеме.  [c.460]

Для более высоких уровней автоматизации характерно применение автоматизированных испытательных постов, которые состоят из ряда контрольных станций (десятка и более), объединенных транспортной системой. Автоматизированный испытательный пост имеет все основные признаки, характерные для автоматизированной производственной системы, которая рассматривается в гл. 20. Такие посты часто встраиваются непосредственно в сборочную линию, при этом изделия с последней сборочной операции автоматически поступают на заключительные испытания. Весь процесс испытаний происходит под управлением ЭВМ. Отдельные контрольные станции, как правило, функционируют независимо друг от друга, и в процессе работы изделие с помошью транспортной системы передается на ту из них, которая свободна в данный момент. Контрольная станция автоматически выполняет установку и ориентацию изделия и подсоединяет необходимую испытательную аппаратуру. Затем проводятся испытания, в ходе которых ЭВМ осуществляет регистрацию данных и анализ результатов. Если изделие успешно выдерживает испытания, оно автоматически передается на следующую сборочную операцию или на участок упаков-  [c.473]


Смотреть страницы где упоминается термин Применение ЭВМ в системах автоматического управления : [c.8]    [c.4]    [c.80]    [c.242]    [c.11]    [c.131]    [c.382]    [c.158]   
Смотреть главы в:

Справочник конструктора  -> Применение ЭВМ в системах автоматического управления



ПОИСК



Автоматическое управление

Игнатов. Автоматизация валковых листогибочных машин с применением систем программного управления автоматической компенсации пружинения материала

Применение алгебры логики при проектировании систем автоматического управления

Система автоматического управлени

Системы Применение

Системы автоматические

Управление автоматическими системами



© 2025 Mash-xxl.info Реклама на сайте