Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Анализ

Зависимости e Nf) на рис. 3.25 дают достаточно полную информацию о сопротивлении длительной малоцикловой усталости конструкционного сплава. Анализ усредненных кривых показывает, что температура испытаний оказывает заметное влияние на сопротивление малоцикловой усталости при увеличении температуры до 700 °С малоцикловая долговечность может уменьшаться в 7 раз.  [c.163]

Цель практической работы — изучение основных типов диаграмм фазового равновесия реальных двойных систем, приобретение практических навыков их использования для изучения превращений, происходящих в сплавах, анализа и расчета фазового состава и состава твердых растворов системы при заданной температуре.  [c.198]


При изменении состава сплава, а также в результате различных воздействий на сплав, например, термического, механического, радиационного и т. п., происходит изменение физических свойств сплава. Анализ изменений этих свойств позволяет установить природу и характер процессов, вызванных указанными воздействиями.  [c.47]

Очевидно, что количество свинца в пыли зависит от количества свинца в сплаве. Анализы пыли, образующейся при точении латуни ЛС 59-1 и бронзы ОЦС 6-6-3, показали, что в некоторых случаях количество свинца значительно превышало санитарные нормы.  [c.21]

Рассмотрим деформационное упрочнение при растяжении на базе той картины пластической деформации, которая была дана в гл. П1. Хотя на практике мы обычно имеем дело с поликристаллическими металлами и сплавами, анализ целесообразно начать с более простых объектов — монокристаллов чистых металлов, где можно наиболее четко и полно выявить основные закономерности деформационного упрочнения. Ограничимся пока интервалом температур до начала интенсивного термического возврата.  [c.112]

Очевидно, что количество свинца в пыли зависит от количества свинца в сплаве. Анализы пыли, образующейся при точении  [c.16]

В данном разделе представлены результаты исследования закономерностей и особенностей формирования многокомпонентных покрытий методом холодного газодинамического напыления (ХГН). В публикациях [71, 72,126] подробно описаны физические основы метода ХГН и условия формирования однокомпонентных покрытий из мелкодисперсных частиц различных металлов и сплавов. Анализ этих работ показал, что метод ХГН создает хорошую физико-химическую основу для получения разнообразных многокомпонентных (из двух и более разнородных материалов) порошковых композиций, хотя возникает при этом ряд сложных проблем, требующих проведения дополнительных исследований.  [c.167]

С помощью метода микроскопического анализа с применением оптического или электронного микроскопа можно получить много данных о строении сплавов. Однако он не выявляет, равномерно лн распределяются атомы веществ, входящих в состав сплава. Так, например, сплав, структура которого показана на рис. 21,а, представляется совершенно однородным.  [c.39]

Конечно во всех случаях важно узнать средний состав изучаемого металла, что определяется химическим анализом. Но химическим анализом можно определить не только средний состав сплава, но и состав отдельных фаз. Для этого применяют так называемый фазовый химический анализ (в том числе карбидный анализ). Исследуемый многофазный объект подвергают электролизу, при котором интересующая исследователя фаза не растворяется (остальные растворяются). Выделенную таким образом фазу изучают различными способами.  [c.40]


Химический или спектральный анализ показывает в твердых растворах наличие двух элементов или более, тогда ка по данным металлографического анализа такой сплав, как и чистый металл, имеет однородные зерна (рис. 80). Рентгеновский анализ обнаруживает в твердом растворе, как и у чистого металла, только один тип решетки.  [c.100]

Эта и следующие диаграммы (рис. 274—278) приводятся на основе критического анализа многочисленных экспериментальных работ по изучению бинарных сплавов железа и даются несколько упрощенно.  [c.343]

Бинарный сплав как короткозамкнутая, многоэлектродная система может быть рассчитан при помощи соответствующей диаграммы коррозии этой системы (см. с. 287). Теоретический анализ подобного рода диаграмм для сплавов приводит к возможным кривым изменения потенциала бинарного сплава в зависимости от его состава (рис. 199).  [c.297]

При анализе диаграмм состояния важным является изучение свойств сплавов в зависимости от их состава. Метод построения диаграмм состав — свойство был разработан Н. С. Курнаковым, открывшим определенную зависимость между свойствами сплавов и диаграммой состояния.  [c.50]

Основы построения и анализа диаграмм состояния тройных сплавов  [c.51]

Для анализа диаграмм состояния тройных сплавов применяют горизонтальные (изотермические) и вертикальные сечения. Горизонтальные сечения соответствуют разрезам диаграммы при постоянной температуре.  [c.53]

Химический состав стали или сплава собственного производства определяется по плавочной Э (ковшевой) пробе, отбираемой при разливке стали в соответствии с ГОСТ 7565—81, а химический состав и марка стали проката — по сертификату металлургического завода. Химический анализ выполняют в соответствии с ГОСТ 12344—78 — ГОСТ 12365—84.  [c.8]

Сложное взаимодействие между элементами в системе Ре —О —С отображается диаграммой в координатах СО—Т (рис. 9.26), на которую в отличие от рис. 9.23 нанесены кривые карбидообразования и показаны области совместного существования жидкого раствора углерода и кислорода L (сварочная ванна), а также области твердых растворов карбидов железа в б-, Y- и а-железе. Можно представить совместно три отдельные диаграммы системы Ре — О, системы Ре — О — Си системы Ре — С, которая, как известно, служит основой для изучения фазовых состояний железоуглеродистых сплавов в процессах термической обработки и при анализе результатов воздействия сварочного цикла на стали. Такая совместная диаграмма приведена на рис. 9.27.  [c.340]

С помощью спектрального анализа за 15-20 мин можно провести анализ легированной стали и определить содержание таких элементов, как Сг, Мо, Ti, Ni, V, Si, Mg, Mn, С, Си, P анализ алюминиевых сплавов на Mg, Мп, Si, Fe, Си, Zn, Ti и бронз на Ni, AI, Fe, Mn.  [c.221]

Анализ соотношения атомов в других устойчивых фазах, возникающих в сплавах, также показал, что их состав контролируется золотой пропорцией (таблица 3.17).  [c.212]

Для установления влияния фуллеренов на кристаллизацию сплавов был проведен анализ количества фуллеренов (Ыф) в сплаве (в расчете на 1 г твердого раствора) с использованием характеристических частот ИК - спектра. Данные расчета для изученных сплавов представлены в таблице 3.20.  [c.222]

При анализе поведения фрактальных структур под нагрузкой целесообразно использовать представления о фрактальных кластерах, что позволяет выделять в деформируемом металле объекты (локальные области), обладающие свойствами фрактальных структур. Деформируемое твердое тело - открытая система, обменивающаяся энергией и веществом с окружающей средой. Результатом этого обмена является самоорганизация фрактальных структур. Образующиеся при деформации металлов и сплавов фрактальные кластеры в зоне предразрушения в зависимости от механизма диссипации энергии связаны либо с кристаллографическими на фоне пор микротрещинами (квазихрупкий отрыв), либо с порами (вязкий отрыв).  [c.232]


Таким образом, режим оптимальной термической обработки зависит от састава сплава. Анализ механических свойств показал, что в сплавах с высоким содержанием кобальта наибольшая прочность достигается при меньшей температуре старения (табл. 32).  [c.113]

Рентгеновский фазовый анализ, однако, успешно использовали при исследовании сложных тройных систем. Общий подход к решению таких задач заключается в медленном охлаждении сплавов различного состава из жидкого состояния до комнатной температуры и последующем получении их рентгенограмм, но которым обычно можно легко сказать, сколько (одна, две или три) фаз в исследуемом сплаве анализ рентгенограмм позволяет определить кристаллические структуры встречающихся фаз. Следует подчеркнуть, что, хотя этот метод и позволяет обнаружить по меньшей мере некоторые из фаз, образующихся в системе, он не дает результатов, отвечающих равновесному состоянию получаемые данные дают только приблизительное представление о фазовых равновесиях в исследуемой системе при комнатной температуре после специальной термической обработки и заданной скорости охлаждения. В частности, если компоненты А, В и С тройной системы А — В — С заметно отличаются друг от друга по температурам плавления, то приближение к равновесию в углу диаграммы состояния, отвечающему самому тугоплавкому металлу, характеризует состояние, зафиксированное при более высокой температуре, чем аналогичное равновесие в углу, отвечающему самому легкоплавкому металлу. Фазы, устойчивые только при высоких температурах, не обнаруживаются превращения, протекающие при более низких температурах, не фиксируются, и в результате частичного протекания превращений исследуемые сплавы при комнатной температуре могут оказаться в неравновесном состоянии. Этот метод только указывает, какие фазы могут встретиться при более тщательном исследовании сплавов и примерные интервалы сЬставов, в которых они образуются.  [c.107]

На этой диаграмме температуры, образующие линию АВСО — линия ликвидус, соответствуют началу кристаллизации сплавов. Температуры, образующие лшшю АН1ЕСР — линия солидус, соответствуют концу кристаллизации сплавов. Анализ диаграммы состояния железо — цементит показывает, что отдельные ее части сходны с рядом простейших диаграмм общего типа, рассмотренных нами ранее  [c.146]

Хейвуд и Норис [54] определяли скорость распространения трещин в пластинках из алюминиевого сплава. Анализ экспериментальных данных позволил вывести следующую эмпирическую зависимость  [c.81]

Явление упорядочения было впервые обнаружено в 1914 г. Н, С, Курнаковым. При изучении электросопротивления сплавов меди и золота было найдено изменение их свойств без видимого изменення микроструктуры. Впоследствии применением рентгеновского анализа было показано, что изменение свойств связано с перераспределением атомов внутри кристаллической решетки.  [c.106]

Точное изучение свойств в зависимости от изменения концентраций (т. е. построение диаграммы состав — свойства) являются важным дополнением при изучении и построении диаграмм состояний. Метод изучения изменений свойств в за-Биснмости от изменения состава и построения диаграммы состав — свойства был положен И. С. Курнаковым в основу разработанного им физико-химического анализа сплавов. В настоящее время физико-химический анализ является одним из основных методов изучения сплавов и его широко применяют в научных исследованиях новых сплавов при изучении структурных превращений и в других случаях.  [c.157]

Анализ имеющихся в литературе опытных данных о скорости окалинооб-разования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование.  [c.102]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]


Повышение стойкости железа к окислению при легировании хромом или алюминием происходит, вероятно, в результате значительного обогащения наружного слоя оксидной пленки легирующими компонентами. В сплавах Fe—Сг, как показали химический и электронномикроскопический анализы, средний слой оксидных пленок обогащен хромом, а внутренний, прилегающий к металлу, — хромом [56, 57]. Этот внутренний слой оксида в большей степени, чем FeO, препятствует миграции ионов и электронов. Обогащение оксидной пленки хромом в Сг—Fe-сплавах сопровождается обеднением поверхностного слря сплава, находящегося непосредственно под окалиной. Этим объясняется  [c.204]

Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25 °С D = 1,3-10" см с) 117], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцин-кованных слоев е-латуни (сплав Zn—Си с 86 ат. % Zn) и -у-латуни (сплав Zn—Си с 65 ат. % Zn) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным.  [c.334]

В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости-  [c.364]

Термодинамика полиморфного превращения. Термодинамический анализ основан на рассмотрении изменений свободной энергии в зависимости от температуры и состава (рис. 13.2). Полиморфное превращение в сплаве Со при охлаждении происходит в интервале температур гч—г. Свободная энергия фаз а и 7 (f и Fy соответственно) в системе твердых растворов А (В) зависит от состава и описывается кривой с минимумом. При понижении температуры Fa и Fy повышаются, а их минимумы смещаются по оси концентраций В При температурах Та и ниже fa и Fy пересекаются друг с другом. Общие касательные к кривым Fa и Fy определяют концентрацию фаз, при которых они будут находиться в равновесии (для а-фазы линия А В для 7-фазы линия А В"). Точки на касательных, соответствующие Со (k, I н п), определяют свободную энергию смеси равновесных фаз fa-i-v При температуре выше или равной TgFa Fy (точки р а q), поэтому полиморфное превращение с образованием смеси равновесных фаз может произойти Рис. 13.2. Изменение свободной ТОЛЬКО В результате ДИффуЗИОН-энергнн фаз в зависимости от тем- перераспределения в в ис-  [c.492]

Исследование макроструктуры. Макроструктурный анализ является предварительной оценкой качества металлов и сплавов.  [c.302]


Смотреть страницы где упоминается термин Сплавы Анализ : [c.23]    [c.47]    [c.478]    [c.303]    [c.160]    [c.573]    [c.100]    [c.101]    [c.7]    [c.7]    [c.88]    [c.57]    [c.169]    [c.293]    [c.120]    [c.157]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.6 , c.49 ]



ПОИСК



277 — Схема системного анализа плавки и сплавов по характеру взаимодействия с кислородом 300 — Давление

277 — Схема системного анализа плавки цветных сплавов

Анализ диаграмм фазового равновесия двойных сплавов

Анализ микроструктуры цветных сплавов

Анализ сплава капельный

Изучение устройства металлографического микроскопа и анализ микроструктуры железоуглеродистых сплавов, находящихся в равновесном состоянии

Микроструктурный анализ двойных сплавов

Микроструктурный анализ легких сплавов

Микроструктурный анализ медных, никелевых и оловянных (подшипниковых) сплавов

Основы построения и анализа диаграмм состояния тройных сплавов

Особенности поляризационных кривых осаждения сплавов и метода их анализа

Сплавы алюминиевые — Анализ

Сплавы магниевые — Анализ

Сплавы магниевые — Анализ выносливости

Сплавы медноникелевые медные — Анализ 6 — 48 — Ковка

Сплавы медные - Анализ

Термический анализ, построение кривых охлаждения и диаграммы состояния сплавов

Термический метод анализа металлов и сплавов

Технология термической обработки, анализ свойства металлических сплавов

Тимофеева, К. В. Лисицкая. Анализ висмуттеллурселенсодержащих сплавов

Характеристика диаграмм двойных сплавов и методические указания по их анализу и решению задач

Характеристика диаграмм тройных сплавов и методические указания по их анализу и решению задач



© 2025 Mash-xxl.info Реклама на сайте