Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режим критический

По результатам продувок F рекомендуется выбирать в пределах 0,09 < 5 0,13. Это позволит обеспечить режим критического истечения из отверстия диафрагмы при сохранении высоких значений эффектов подогрева топливо-воздушной смеси в перфорированной камере воспламенителя. Относительный радиус  [c.338]

Режим критического успокоения сводится к следующему. Если подобрать / вн, на которое замкнута рамка гальванометра [формула (6)] так, чтобы степень успокоения Р=1, то рамка после максимального поворота очень быстро вернется к первона-  [c.175]


При первом взгляде на задачу возникает искушение рассматривать тепловые флуктуации локальной намагниченности, скажем, в ферромагнитном кристалле как форму ячеистого беспорядка, т. е. как нечто вроде разреженного газа перевернутых спинов. В этом случае, однако, модель Изинга может вызвать особенно сильную путаницу при попытке разобраться в сути дела (рис. 1.4,в). Векторный характер спиновой переменной 8 дает себя знать вместо полных переворотов спина в некоторых узлах мы имеем локально коррелированные изменения ориентации спина в довольно больших областях пространства (рис. 1.4, б). Возбуждение почти независимых спиновых волн приводит, следовательно, к появлению совершенно иного типа беспорядка, который будет рассмотрен в 1.8. При увеличении температуры этот беспорядок усиливается, причем возбуждаются все более и более короткие волны. Задача о математическом описании перехода из этой фазы в фазу парамагнитного беспорядка (см., например, рис. 1.4, а) через режим критических флуктуаций ( 5.11) представляет собой пробный камень статистической механики кооперативных явлений.  [c.22]

Таким образом, на характеристике обычно можно выделить два режима I — режим начала изменения выходных параметров насоса (или критический режим) и П — режим срыва (или срывной режим) . Критический режим иногда совпадает со срывным режимом.  [c.188]

С точки зрения газовой динамики в плоскости щели, соответствующей магистральной трещине докритической - безопасной длины, устанавливается режим критического истечения газа.  [c.127]

Очевидно, что режим критического истечения сохраняется на протяжении всего третьего и в начальный период четвертого этапов продольного разрушения, когда длина трещины соответствует безопасным размерам с точки зрения механики разрушения.  [c.128]

Режим течения данной жидкости в данной трубе изменяется примерно при определенной средней по сечению скорости течения которую называют критической. Как показывают опыты, значение этой скорости прямо пропорционально кинематической вязкости v и обратно пропорционально диаметру d трубы, т. е.  [c.64]

Критический режим развитой кавитации, при котором начинается снижение подачи, характеризуется условиями У = при окончании процесса восполнения в точке 6 (рис.. 3.1.5, б). Кавитация в критических условиях должна начаться при вполне определенном теоретическом значении нр = Уц<шах) близком по величине значению средней скорости поршня v,j p, представляющей собой высоту прямоугольника О—7—8—5—О, равновеликого площади под сину-  [c.296]


Одной из наиболее важных гидродинамических характеристик процесса псевдоожижения является минимальная (критическая) скорость псевдоожижения или скорость начала псевдоожижения tM. С первых шагов систематического исследования метода псевдоожижения определению величины % уделялось большое внимание. Обширный теоретический и экспериментальный материал по этому вопросу содержится во многих статьях и монографиях, посвященных псевдоожиженным слоям. Различные авторы для каждого конкретного случая предлагают расчетные корреляции, учитывающие при помощи разных коэффициентов режим газового потока, форму частиц, полноту взвешенного слоя и другие особенности систем, определение которых часто представляет значительные трудности. При этом базисным ло-преж-нему является уравнение, полученное в [11].  [c.33]

Режим закалки определяется положением критических точек и способностью аустенита к переохлаждению.  [c.370]

Определяют критическое значение толщины масляного слоя, при которой нарушается режим жидкостного трення, см. условие  [c.280]

Для каждой установки существует некоторый диапазон критических значений чисел Ке р, при которых происходит переход от одного режима течения к другому. Значение критического числа Ре, ниже которого режим течения обязательно ламинарный, для трубы круглого сечения составляет примерно 2300. Число Ре р, при котором ламинарный режим течения переходит в турбулентный, существенно зависит от условий входа потока в трубу, состояния поверхности стенок и др. При очень плавном входе и гладких стенках переход от ламинарного режима к турбулентному наступает при числах Ре, р > 2300. На практике чаще встречается турбулентный режим течения.  [c.19]

Так как значение приведенной длины больше критического, то режим течения нленки конденсата в нижней части трубы турбулентный.  [c.167]

При Re < Re,, , (Re,,., — критическое значение числа Рейнольдса) режим течения ламинарный, при Re >  [c.108]

Определить режим движения при t = 10° С и 7 == 40° С и указать температуру, соответствующую критическому значению числа Рейнольдса (Ре, р = 2300).  [c.119]

Задача V—19. В трубопроводе диаметром с1 и длиной / под статическим напором Я движется жидкость, кинематическая вязкость которой V. Получить выражение для критического напора, при котором ламинарный режим переходит в турбулентный, учитывая в трубопроводе только потери на трение.  [c.119]

Определяется режим движения путем сравнения напора Н с его критическим значением (см. задачу V—19 гл. V)  [c.236]

Зависимость величины зерна от температуры и степени деформации часто изображают в виде диаграмм рекристаллизации (рис. 39). Эти диаграммы дают возможность в первом приближении выбрать режим рекристаллизационного отжига. Но следует учитывать, что результаты отжига зависят и от других факторов. Диаграммы рекристаллизации не учитывают влияния примесей, скорости нагрева и величины зерна до деформации. Чем быстрее нагрев, тем мельче зерно. При уменьшении исходного зерна повышается критическая степень деформации и рекристаллизованное зерно (при данной степени деформации) оказывается мельче.  [c.59]

Эти диаграммы, получаемые экспериментально, позволяют определить критический режим работы подшипника и критическое значение минимальной толщины масляной пленки  [c.351]

Потеря устойчивости течения между двумя концентрическими цилиндрами приводит к появлению и росту вторичного течения (вихрей Тейлора). С увеличением числа Рейнольдса вихри Тейлора становятся неустойчивыми, и при втором критическом числе Рейнольдса устанавливается новый режим, в котором по вихрям Тейлора бегут азимутальные волны [225].  [c.144]

Так как режим истечения поддерживается критическим, то  [c.336]

Однако определить скачок температуры горячей поверхности стенки при переходе на паровой режим пористого испарительного охлаждения из этого уравнения мы не можем. Вместе с тем, можно сделать предположение о неустойчивости границы раздела пар-жидкость. Действительно, при достижении критического расхода охладителя Скр определяемого уравнением (6.48), поверхность раздела фаз будет точно находиться на внешней поверхности стенки. Предположим, что под действием малых возмущений граница раздела сместилась внутрь стенки на величину dZ. К поверхности раздела (6 -dZ) подходит охладитель с расходом С р. При данном давлении подачи и>за повьпиения сопротивления то же количество пара не может пройти через поверхность стенки 5, в результате чего в объеме dZ происходит прирост массы во времени. В этом случае граница раздела перемещается на внутреннюю поверхность стенки. Одновременно с перемещением поверхности раздела возрастает давление подачи, в результате чего жидкая пленка вновь появляется на внешней границе раздела. Этим можно объяснить наличие скачка температуры при критическом расходе охладителя. Полагая в уравнении Г6.55) Z = 1 и / =0, получим максимальное значение температуры на  [c.158]


Хорошо известно, что в случае адиабатического течения чистого газа в сопле без трения критический режим наступает при звуковой скорости. Из-за внутреннего трения между фазами в системе газ — твердые частицы ожидается другой результат. Удельный расход смеси через сечение А равен  [c.301]

Критическим значением числа Рейнольдса для круглых труб будет значение Rei p = 2320, при меньших значениях режим течения ламинарный, при больших — турбулентный.  [c.105]

На рис. 8.23 приведена осциллограмма для сопла, имевшего угол расширения диффузора 1°, из которой следует, что при постоянном давлении нагнетания жидкости Р = 15,0 МПа и изменяемом давлении на выходе сопла Р от атмосферного до 11,4 МПа расход жидкости Q был стабилен и равен 420 см /с, а давление в критическом сечении сохранялось равным 2,0 КПа, что соответствует давлению насыщенных паров жидкости - воды при температуре 15° С. Колебания давления на выходе сопла частотой до 2,0 Гц (рис. 8.24) не влияли на величину вакуума в критическом сечении сопла и на расход жидкости через него. При увеличении давления Р на выходе сопла выше величины 0,8 давления нагнетания жидкости в сопло кавитационный режим в последнем нарушался, в результате чего расход жидкости (рис. 8.23, 8.24) уменьшался, а статическое давление в критическом сечении сопла Р (см. рис. 8.23) скачкообразно увеличивалось.  [c.205]

Поскольку скорость потока может быть как выше, так и ниже скорости звука, существует и такой режим, когда скорость потока равна скорости звука, т. е. М = 1. Этот режим называется критическим-, ему соответствует значение температуры в потоке  [c.24]

Следует отметить, что около критического сечения поток очень чувствителен к изменению поперечного сечения канала. Так, папример, для изменения числа М на 10 % (от М = 0,9 до М = 1) достаточно изменить площадь сечения на 1 %, а для перехода от М = 0,95 к М = 1 — на 0,25 %. По этой причине нельзя поддержать критический режим на достаточно протяженном участке прямой трубы (пограничный слой, образующийся за счет торможения газа у стенок, как бы сужает сечение струи).  [c.144]

Выше было показано, что при течении в цилиндрической трубе с трением дозвуковой поток ускоряется, а сверхзвуковой тормозится, причем предельно возможным состоянием в обоих случаях при непрерывном изменении параметров является критический режим, т. е. достижение потоком скорости звука в выходном сечении трубы. Уравнение (17) позволяет установить количественную связь между изменением скорости и приведенной длиной трубы X- Если на входе в трубу поток дозвуковой и приведенная скорость его равна Я1 и если приведенная длина трубы меньше критического значения, определяемого формулой (18), то на выходе из трубы поток будет также дозвуковым, причем из уравнения  [c.187]

Поясним способ пользования этими кривыми на конкретном примере. Пусть дана труба с приведенной длиной х 0,6. По кривой 3 видно, что в этой трубе установится критический режим ( 12=1) при значении приведенной скорости на входе Xi = 1,95. Проверим сначала характер течения в трубе в случае Ai > 1,95, например для = 2,2. По формуле (16) можно вычислить скорость в конце трубы  [c.190]

Режим истечения газа действительно будет дозвуковым, сколь бы велик ИИ был подогрев в камере заданное полное давление газа, снижающееся в процессе подвода тепла, недостаточно для создания звуковой скорости истечения в атмосферу. Если бы полное давление было большим, например р = 2,4-10 Н/м , то из последней формулы следовало бы г(Хз) = 0,390 это значение меньше критического, так как 7-(1) = 0,429. Следовательно, при таком давлении режим истечения был бы критическим и Ха = 1,0.  [c.251]

Рассмотрим теперь особенности течения с трением при сверхзвуковой скорости на входе в трубу. Из формулы (130) следует, что если приведенная длина трубы меньше критического значения, определяемого для данного значения К > i формулой (131), то по длине трубы скорость потока будет уменьшаться, оставаясь сверхзвуковой. На выходе из трубы при непрерывном торможении потока будет получено Я2 > 1. При некотором значении приведенной длины трубы, называемом критическим, из уравнения (130) следует ф( 2)= 1, т. е. 2=1. Этой длине соответствует предельно возможный режим течения с непрерывным изменением скорости от заданного значения A,i > 1 до кч = 1. Если X > У.кр, то непрерывное торможение потока в трубе невозможно. В этом случае уравнение (130), описывающее течение с непрерывным изменением скорости, не имеет решений для 2, так как из него следует ф(Я-2)< 1. В действительности при этом в начальном участке трубы сверхзвуковой поток тормозится  [c.263]

Предположим, что в состав смеси входит испаряющаяся жидкая фаза — нагретая вода. Предположим также, что режим критический, среда в критическом сечении однородна, в звуковой волне отсутствует переход фаз. Правомерность данного допущения экспериментально подтверждена работами [23, 41]. Будем считать, что за короткий промежуток времени прохождения звуковой волны теплообмен между фазами не происходит. В этом случае, поступая аналогично изложенному выше, получаем формулу для расчета скорости звука в парогазоводяной смеси в виде  [c.54]

Рис, 1,10, Схемы затухания колебаний рамки гальванометра после прохождения через нее короткого импульса тока а - периодический режим затухания (сопротивление внешней цепи велико или цепь разомкнута) б, в - апериодический режимы б - переуспокоение (сопротивление внешней цепи мало), в - режим критического успокоения (сопротивление внешней цепи равно критическому)  [c.11]


На рис. 3.50 представлена срывная кавитационная характеристика, типичная для шнекоцентробежных насосов ЖРД. При давлении на входерцазв насосе возникает кавитация. Однако уменьшение давления от До рщ,, несмотря на развитие кавитации, не приводит к изменению напора и КПД насоса, но при этом могут наблюдаться эрозионные и колебательные явления. При давлении напор начинает снижаться (одновре.менно с напором снижается КПД). Будем называть этот режим критическим. При давлении на входе рррв напор резко падает. Резко снижаются также КПД и расход, который уже не удается поддержать постоянным. Этот режим будем называть срывным кавитационным.  [c.188]

Для плотного гравитационного слоя массовая скорость увеличивается за счет линейной скорости, поскольку концентрация его практически неизменна. Однако при превышении предельной скорости слоя наступает его разрыв и переход в режим падающего слоя. Здесь наблюдается как бы та же картина, что в кипящем слое, но применительно к другим условиям. Разнонаправленное влияние двух факторов — увеличение теплоотдачи за счет роста скорости и ее уменьшение за счет падения концентрации (плотности) потока — уравновешено в критической точке. Переход через критическое число Фруда (здесь — через оптимальную массовую скорость) в ряде случаев определяет превалирующее влияние второго фактора. В области потоков газовзвеси основным интенсифицирующим фактором является концентрация твердой фазы. На рис. 1-4 линия, характеризующая поток газовзвеси, построена для Un = onst следовательно, увеличение массовой скорости вызвано лишь ростом концентрации. При переходе в область флюидных потоков наблюдается второй максимум.  [c.25]

В ламинарных течениях частицы могут выступать как своеобразные дискретные турбулизаторы. Последнее проявляется в определенной дестабилизации, нарушении устойчивости ламинарного течения взвешенными частицами. Это приводит к раннему качественному изменению режима движения. При этом турбулентный режим наступает при числе Рейнольдса зачастую в несколько раз меньшем [Л. 40], чем Некр для чистого потока. Ю. А. Буевич и В. М. Сафрай, объясняя подобный дестабилизирующий эффект в основном межкомпонентным скольжением, т. е. наличием относительной скорости частиц, указывают на существование критического значения отношения полного потока дисперсионной среды к потоку диспергированного компонента, зависящего и от других характеристик, при превышении которого наступает неустойчивость течения. Подобная критическая величина может быть достигнута при весьма малых числах Рейнольдса. Отметим, что критерий проточности Кп (гл. 1) может также достичь высоких (включая и характерных) значений при низких Re за счет увеличения концентрации, соотношения плотностей компонентов и др. Согласно (Л. 40] нарушению устойчивости способствует увеличение размеров частиц и отношения плотностей компонентов системы. Отсюда важный вывод о возможности ранней турбулизации практически всех потоков газовзвеси и об отсутствии этого эффекта для гидро-взвесей с мелкими частицами или с рт/р 1 (равноплотные суспензии).  [c.109]

Указание. Предварительно определить режим движения в трубопроводе, подсчитав критическую скорость и критическую потерю давления которые соответствуют верх1 ей границе ламинарного  [c.259]

До значений Re = 2300 поток жидкости в трубе остается ламинарным, при больших значениях Re поток переходит в турбулентный. Ламинарный поток является устойчивым только в докрити-ческой области (до Re = 2300). При некоторых специальных мерах предосторожности ламинарное движение можно наблюдать при числах Re, значительно превышающих критическое. Однако такой режим движения является неустойчивым и при малейшем возмущении потока переходит в турбулентный.  [c.403]

Последующие эксперпменты привели к так называемой стандартной кривой сопротивления ]686] для одиночной твердой сферы, движущейся с постоянной скоростью в неподвижной изотермической несжимаелюй жидкости бесконечной протяженности. График на фиг. 2.1 показывает, что режим Стокса соответствует стандартной кривой сопротивления при Пе 1, а режим Ньютона в области 700 < Пе < 2-10 ]294]. По достижении Пе 10 (верхнее критическое число Рейнольдса) происходит резкое уменьшение коэффициента сопротивления, обусловленное переходо.м ла.минарного пограничного слоя на поверхности тела в турбулентный ).  [c.30]

Ядерные реакторы имеют активную зону, в которой находится ядерное топливо и замедлитель и где протекает самоподдерживаю-щийся цепной процесс деления ядер. Размеры и наличие границ активной зоны существенно влияют на баланс нейтронов в цепном процессе. Число нейтронов, возникающих в активной зоне, пропорционально ее объему, тогда как число нейтронов, покидающих активную зону, пропорционально ее поверхности. Поэтому при очень малых размерах реактора число покидающих нейтронов будет настолько относительно большим, что цепной процесс не сможет идти. Объем (или масса) реактора, при котором достигается критический режим k = 1) реактора, называется критическим объемом (или критической массой). Критический размер реактора  [c.314]

Заметим, что критические скалывающие напряжения, необходимые для начала пластической деформации путем скольжения, обычно меньше, чем критические напряжения для деформации путем двойникования, поэтому пластическая деформация двойни-кованием встречается значительно реже. Например, для Zn критическое напряжение для начала скольжения равно 0,18-10 Па, а для двойникования —29-10 Па. В некоторых материалах деформация может осуществляться обоими способами — скольжени-  [c.132]

С другой стороны, если при заданной длине трубы (х = = onst) увеличивать отношение давлений П, то будут возрастать скорости как на входе, так и на выходе, пока величина Я2 не достигнет критического значения 7 2 = 1. Дальнейшее увеличение П не изменяет ни %i, ни Л2, однако в выходном сечении трубы установится избыточное по сравнению с окружаюгцей средой (резервуаром) давление. Для этого режима уравнение (129) несправедливо, так как при выводе его предполагалось р2 = Рв, связь между параметрами потока определяется только уравнением (130). Из условия неразрывности можно лишь найти минимальное потребное значение П, при котором установится режим с Л2 = 1 и заданным значением %и так как, согласно уравнению (129),  [c.262]


Смотреть страницы где упоминается термин Режим критический : [c.175]    [c.735]    [c.662]    [c.354]    [c.453]    [c.591]    [c.9]    [c.260]   
Сборник задач по гидравлике и газодинамике для нефтяных вузов (1990) -- [ c.169 ]

Прикладная газовая динамика Издание 2 (1953) -- [ c.21 , c.102 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте