Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние нагрева и охлаждения на структуру и свойства металлов

ВЛИЯНИЕ НАГРЕВА И ОХЛАЖДЕНИЯ НА СТРУКТУРУ И СВОЙСТВА МЕТАЛЛОВ  [c.63]

Сталь по своему составу относится к многокомпонентным сплавам, испытывающим сложные превращения в твердом состоянии при нагреве и охлаждении. Ее структура и свойства существенно изменяются под влиянием термической обработки. В процессе обжига эмалей стальные изделия нагреваются до высоких температур. Превращения, которые происходят при этом в металле, оказывают значительное влияние на формирование эмалевого покрытия и последующие служебные качества эмалированных изделий и аппаратов.  [c.55]


В предыдущих разделах было выяснено, что температура оказывает решающее влияние на структуру и свойства металлов и сплавов в твердом состоянии. При этом весьма большое значение имеет время, поскольку структура изменяется в результате перемещений атомов по законам диффузии, которая обычно происходит достаточно медленно. Следовательно, помещая металл в разные температурные условия, изменяя время пребывания при заданной температуре, регулируя скорости нагрева и охлаждения, можно влиять на структуру и свойства твердого металла. Именно в этом заключается сущность одного из видов обработки металлов, называемой термической обработкой. Таким образом, термическую обработку можно определить как процесс теплового воздействия на металлы и сплавы, направленный на изменение их структуры и свойств.  [c.90]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]


В данной главе дается классификация сталей и сплавов тех типов, которые рассматриваются в справочнике, отмечаются особенности их структуры, влияние на характеристики разных факторов. Раздельно обсуждаются свойства сплавов на железной основе — сталей перлитного и ферритного классов, претерпевающих полиморфные превращения при нагреве и охлаждении аустенитных сплавов на железной и никелевой основе сплавов цветных металлов — титана, алюминия, меди, циркония.  [c.41]

Размер аустенитного зерна является важной структурной характеристикой стали при ТО. От этой характеристики зависят механические свойства, особенно ударная вязкость. Одним из методов, устраняющих рост зерна может быть быстрый нагрев без длительных выдержек при температурах аустенитизации [251 . При индукционном нагреве из-за малой продолжительности процесса, включающего периодический нагрев и охлаждение при полной фазовой перекристаллизации в каждом цикле, скорость образования зерен аустенита значительно превышает их рост. Такая ТЦО эффективна в случае, когда переохлажденный аустенит характеризуется малым инкубационным периодом и небольшим временем полного распада. На рис, 1.5 показано влияние числа циклов и скорости нагрева в циклах на размер зерна аустенита. Образующийся в таких условиях мелкозернистый аустенит может быть неоднороден по составу, вследствие чего устойчивость аустенита отличается от того аустенита который образуется в равновесных условиях. Получению мелкозернистой структуры металлов и улучшению их свойств в результате ТЦО способствует, очевидно, и сведение до минимума выдержек при максимальных температурах нагрева.  [c.14]

Вся зона основного металла, в которой в результате нагрева и охлаждения происходит изменение структуры и свойств, называется зоной термического влияния. Ширина ее ограничивается участком с температурой около 100° С. В зависимости от способа сварки она может быть очень малой (до 1 мм или до 40—50 мм). Строение зоны термического влияния для углеродистой стали показано на рис. 311.  [c.489]

Чем больше скорость охлаждения при закалке, тем больше прокаливаемость. Однако всегда скорость охлаждения поверхностных слоев закаливаемой детали (образца) выше скорости охлаждения сердцевины. Поэтому влияние термической обработки оказывается более значительным для поверхностных слоев, чем для нижележащих участков, в которых аустенит в процессе охлаждения при закалке распадается на феррито-карбид-ную смесь. Для сердцевины деталей большого сечения улучшающее влияние термической обработки может проявиться в результате неполной прокаливаемости в небольшой степени или даже не проявиться срединные слои металла могут сохранить почти без изменения структуру и свойства, которые они имели до закалки. Если в аустените присутствуют легирующие элементы, то о<ни повышают его устойчивость против распада при более медленном охлаждении, особенно в перлитной области. Это позволяет получить структуру мартенсита или троостит + мартенсит на значительно большей глубине или даже по всему сечению детали (в зависимости от ее размеров и содержания легирующих элементов в твердом растворе). Устойчивость аустенита возрастает также с увеличением размеров его зерна. Повышение температуры нагрева для закалки вызывает рост зерна аустенита и дополнительно повышает прокаливаемость. Однако рост зерна понижает ударную вязкость, что ограничивает возможность повышения прокаливаемости за счет значительного повышения температуры закалки.  [c.201]

Во время наплавки или сварки металл ванны находится в расплавленном состоянии, а прилегающая к ней часть основного металла нагревается до температур, превышающих критические точки. При этом в большинстве случаев сварочная ванна окружена значительной массой холодного металла. Это приводит к резкому увеличению скорости охлаждения нагретого металла и возникновению в нем различных структур. Таким образом, на участке наплавки или сварки происходит не только кристаллизация наплавленного металла, но и перекристаллизация основного металла с образованием зоны термического влияния. На этом участке механические свойства основного металла, вследствие его перекристаллизации, могут изменяться в значительных пределах. Например, предел прочности, предел текучести, относительное удлинение могут снижаться до 50% по сравнению с этими же свойствами основного металла вне зоны термического влияния. Так же резко может изменяться и твердость металла отдельных участков этой зоны. Поэтому структурные превращения в основном металле имеют не менее важное значение для прочности детали, восстановленной наплавкой или сваркой, чем аналогичные свойства наплавленного металла.  [c.9]


Теплота, выделяемая при сварке, распространяется вследствие теплопроводности в основной металл. В каждой точке околошовной зоны температура вначале нарастает, достигая максимума, а затем снижается. Чем ближе эта точка расположена к границе сплавления, тем быстрее в ней происходит нагрев металла и тем выше максимальная температура нагрева. Поэтому структура и свойства основного металла в различных участках зоны термического влияния различны. Протяженность зоны термического влияния и характер структурных преврашений в ней зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п. Основной металл — нагартованный или после отжига на снятие напряжений — претерпевает в этой зоне возврат и рекристаллизацию. Если свариваемый материал является полиморфным, т. е меняет кристаллическую решетку в зависимости от температуры, то в зоне термического влияния сварки происходят фазовые превращения. Степень развития этих превращений в каждом слое зоны зависит от максимальной температуры нагрева слоя, длительности нахождения выше температуры фазового превращения, скорости нагрева и охлаждения.  [c.52]

При сварке аустенитных сталей быстрое охлаждение расплавленного ядра создает дендритную структуру. Однако углерод в твердом растворе остается весь в связанном состоянии и ядро не теряет нержавеющих свойств. Опасными являются зоны нагрева до 500—800" С, где углерод выпадает из твердого раствора и связывается с хромом, образуя карбиды хрома по границам зерен. Из-за такой химической и структурной неоднородности в этой зоне нержавеющие свойства стали утрачиваются. Очевидно, режимы сварки аустенитных нержавеющих сталей должны быть импульсными, для того чтобы опасные зоны нагрева оказывались возможно более тонкими. Типовая структура сварной точки такого рода показана на рис. 99. Здесь представлены последовательно начало плавления металла в плоскости контакта (рис. 99, а) и готовое ядро (рис. 99, б). Импульсные (жесткие) режимы характерны для сварки алюминиевых и магниевых сплавов по двум причинам. Первая—это высокая теплопроводность сплавов. Второе и главное — в зоне термического влияния при температурах выше 250° С из твердого раствора выпадают упрочняющие  [c.199]

Размеры зон термического влияния сварки в свариваемом металле, например при сварке сталей или термически обрабатываемых сплавов алюминия, расчетными методами определяются достаточно хорошо. Расчетные методы для таких областей металла в свариваемом изделии позволяют определять термиче кие циклы нагрева, максимальные температуры нагрева и скорости охлаждения, влияющие на конечную структуру и свойства.  [c.193]

Термический цикл основного металла при сварке. В результате теплового воздействия дуги металл изделия в точках на самом шве или вблизи него претерпевает нагрев и охлаждение. Характер нагрева и охлаждения разных точек различен и зависит от их расположения. Каждый участок металла подвергается особой термической обработке, в результате которой меняется его струкгура. Совокупность участков основного металла, в которых в результате воздействия источника тепла изменилась структура или свойства, называют зоной термического влияния. Иногда термическое воздействие сварки мало отражается на свойствах сварного изделия, но чаще ухудшает свойства околошовной зоны.  [c.153]

Изучено влияние скорости охлаждения после печного и индукционного нагрева на структуру, статическую и динамическую прочность иизкоуглеродистой стали Ст. 3 и низколегированной стали 10Г2С1. Заготовки охлаждали вместе с печью, на воздухе, в масле и в воде. Установлено увеличение циклической прочности за счет поверхностной индукционной закалки. Причина повышения циклической прочности низкоуглеродистых сталей при увеличении скорости охлаждения и температур аустенитизации свя зана с обра.зованием структур с лучшим сочетанием механических свойств и более благоприятной системой остаточных напряжений в поверхностном слое металла.  [c.427]

Особенностями металлургических процессов при сварке плавлением являются весьма высокие температуры и кратковременность всех процессов. На рис. 153 показана структура зоны влияния (строение сварного шва) после затвердевания и распределение температуры в малоуглеродистой стали в зоне термического влияния. Наплавленный металл 1 (участок 0—1) имеет столбчатое (дендритное) строение, характерное для литой стали при ее медленном затвердевании. Если наплавленный металл или соседний с ним участок 1 был сильно перегрет, то при охлаждении на участке 2 зерна основного металла (низкоуглеродистой стали) имеют игольчатую форму, образуя грубоигольчатую структуру. Этот участок имеет крупнозернистую структуру и обладает наибольшей хрупкостью и весьма низкими механическими свойствами. На участке 3 температура металла не превышает 1000° С. Здесь имеет место нормализация, структура получается мелкозернистой с повышенными механическими свойствами по сравнению с основным металлом. На участке 4 происходит неполная перекристаллизация стали, так как температура нагрева находилась между критическими точками Ас1 и Асз. На этом Участке наряду с крупными зернами феррита образуются и мелкие зерна феррита и перлита.  [c.338]


В участке частичной перекристаллизации 2 на рис. 1,а) основной металл нагревается выше температуры Гн. ф. п, которая для стали соответствует началу превращения перлита в аусте-нит (критическая точка Ас ), а для большинства сплавов титана— началу а->-р-нревращения. Обычно структурные изменения в этом участке по сравнению с околошовной зоной в меньшей степени оказывают отрицательное влияние на свойства сварных соединений. Однако при определенных исходной структуре, и также условиях нагрева и охлаждения при сварке в этом участке возможно разупрочнение основного металла, обусловленное либо характером новых фаз, образующихся при последующем охлаждении, либо процессами в старых фазах при нагреве.  [c.13]

Представляет интерес оценить влияние степени неравновес-ности условий фазовых превращений на формирование структуры II свойств сварных соединений, учитывая широкий диапазон изменения скоростей нагрева и охлаждения металла при сварке.  [c.15]

Все металлы и сплавы металлов имеют кристаллическое строение (структуру). Кристаллы образуются во время затвердевания расплавленного металла. Форма, размеры, взаимное расположение кристаллов зав,исят от х]имичеокого состава металла, скорости охлаждения его, наличия посторонних примесей и др. Величина и расположение кристаллов в сплавах металлов могут изменяться также и под влиянием внешних воздействий на металл, например ковки, повторного нагрева и т. п. От величины, формы и расположения кристаллов в сплаве зависят многие свойства металлов. Металлы обладают рядом ценных свойств, которые определили такое широкое применение их в технике. Из наиболее важных физико-механических свойств металлов следует отметить следующие.  [c.13]

В результате нагрева и последующего охлаждения в металле околошовной зоны (в зоне термического влияния сварки) происходят различные изменения, влияющие на структуру и механические свойства сварного соединения. Изменения в зоне термического влияния зависят от химического состава стали, ее предварительной механической наклеп) и термической обработки, температуры и длительности нагрева и, наконец, скорости охлаждения. Поведение стали при нагреве и охлаждении в условиях контактной сварки, естественно, следует общим законам термической обработки. Однако при этом следует учитывать две особенности контактной сварки, которые могут оказать существенное воздействие на свойства стали в зоне термического влияния а) исключительно высокие, в отдельных случаях, скорости н а]грева и ох.таждения (например, при точечной сварке стали в  [c.57]

Нормализация чугуна осуществляетс при нагреве до температур выше критических, обычно 850—950° С [И]. Целью нормализации является получение отливок со структурой П, повышенной прочностью и износостойкостью, причем в сыром состоянии отливки могут подвергаться нормализации также для измельчения П. Режим процесса выбирается в зависимости от количества Фе в сырой структуре и состава чугуна, особенно от процента Si. Иногда нормализацию совмещают с графитизирующим отжигом или гомогенизацией для получения более однородной структуры после охлаждения на воздухе. Ускоренное охлаждение чугуна (на воздухе) после выдержки при температуре аустенизации способствует увеличению количества Сев в тем большей степени, чем выше температура и больше время выдержки перед охлаждением на воздухе. На режим нормализации оказывают влияние толщина отливки и состав металла, которые определяют стабильность П и положение интервала эвтектоидного превращения. После прогрева отливок, особенно при исходной структуре Фе—П, они часто выдерживаются в печи еще 30—120 мин с целью гомогенизации. При нормализации A4 наряду с разложением карбидов стабилизируется аустенитная структура, и в этом случае достаточно охлаждения на воздухе. Используя нормализацию, можно повысить марки чугуна примерно на два класса. Наиболее высокие прочностные свойства достигаются при нормализации синтетического чугуна. Для повышения пластичности в ряде случаев ВЧШГ с перлитной основой подвергают двойной нормализации [9].  [c.633]

Сила тока при сварке подбирается в каждом отдельном случае, экспериментально в зависимости от толщины металла я диаметра электродов так, чтобы разогрев стали был минималь ным, а скорость охлаждения шва и зоны термического воздействия — максимальной. Процесс сварки следует вести возможно быстрее, не задерживая электрода, так как при длительнол нагреве сталь ухудшает свои противокоррозийные свойства-Увеличение скорости сварки сопровождается измельчением первичной структуры швов, благоприятно сказывающейся на их коррозионной стойкости. Скорость охлаждения оказывает влияние Нс1 характер первичной кристаллизации и на полноту выделения избыточной фазы по границам зерен аустенита. Чем медленнее остывает сварной шов, тем большее количество избыточной фазы выпадает по границам зерен. При этом сварку необходимо выполнять короткой дугой, так как при длинной дуге образуются поры в сварных швах и сильно выгорают ле,-гируюшие элементы, что может снизить качество швов и также уменьшить сопротивление коррозии.  [c.101]


Смотреть страницы где упоминается термин Влияние нагрева и охлаждения на структуру и свойства металлов : [c.160]    [c.31]    [c.82]    [c.376]    [c.39]    [c.108]   
Смотреть главы в:

Слесарное дело с основами материаловедения Издание 5  -> Влияние нагрева и охлаждения на структуру и свойства металлов



ПОИСК



141 — Влияние на свойства

Влияние Охлаждение

Влияние нагрева на свойства металла

Влияние структуры металла

Металлов Свойства

Нагрев и охлаждение металла

Нагрев и охлаждение тел

Нагрев металла

Охлаждение металла

Свойства с а-структурой

Структура и свойства металлов



© 2025 Mash-xxl.info Реклама на сайте