Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионная стойкость сталей и сплавов в различных средах

КОРРОЗИОННАЯ СТОЙКОСТЬ СТАЛЕЙ И СПЛАВОВ В РАЗЛИЧНЫХ СРЕДАХ  [c.275]

В табл. 1 и И приводятся данные по оценке коррозионной стойкости сталей и сплавов в различных агрессивных средах. При составлении таблиц были использованы результаты экспериментальных работ, а также материалы, опубликованные в литературе [67, 174—177].  [c.275]

В табл. 3, по данным [9] и др., приведена оценка коррозионной стойкости распространенных сталей и сплавов в различных средах.  [c.654]


КОРРОЗИОННАЯ СТОЙКОСТЬ НЕРЖАВЕЮЩИХ сталей и сплавов в различных средах  [c.174]

Титан и его сплавы благодаря высокой коррозионной стойкости в большинстве агрессивных сред все больше вытесняют традиционные стали и сплавы в различных отраслях промышленности и прежде всего в химической, нефтяной, металлургической, пищевой и транспортном машиностроении.  [c.70]

Стойкость сталей и сплавов против коррозии в различных средах зависит от их состава, структурного состояния, коррозионной среды, в которой они работают, и от применяемых напряжений.  [c.483]

Труднообрабатываемые стали и сплавы. В изготовлении современных машин и приборов все более широкое применение находят стали и сплавы, обладающие особыми физико-механическими свойствами, такими, например, как коррозионная стойкость в различных средах, теплостойкость, жаропрочность, высокая механическая прочность.  [c.40]

Применение стойких к КР материалов. Установлено, что пол ная невосприимчивость аустенитных коррозионно-стойких сталей к КР в растворах хлоридов достигается при содержании 40—50 % никеля в сплаве. Ранее уже рассматривалось влияние легирующих компонентов на стойкость против КР в различных средах. Необходимо отметить, что в последнее время большое значение придается получению сплавов повышенной частоты (например, методом вакуумной плавки). Снижение при этом содержания азота (до 0,008 %) и углерода (до 0,01 %) в хромоникелевых сталях повышает их стойкость против КР.  [c.76]

Химический состав этих сталей и сплавов, нх механические свойства н ориентировочные режимы термической обработки указаны в табл. 19, 20, Коррозионная стойкость литых деталей в различных средах, как правило, мало отличается от коррозионной стойкости деформированной стали при условии применения соответствующих режимов термической обработки.  [c.50]

Результаты исследований анодного поведения никеля, хрома, железа, титана, молибдена, вольфрама, циркония, сплавов железо — хром, железо-— никель, хром — никель, хром — кобальт и различных фазовых составляющих сталей и сплавов обсуждаются в ряде обзорных работ 9, 10, 54— 56]. Подробно обсуждается влияние анионного состава агрессивной среды на анодное поведение металлов и сплавов [57]. Подобные исследования, имеющие большое практическое и теоретическое значение, обычно проводятся с целью предсказания коррозионного поведения существующих металлов и сплавов, а также предварительной оценки коррозионной стойкости вновь создаваемых марок сталей.  [c.90]

Коррозионная стойкость сталей, сплавов в средах акриловой кислоты с различным содержанием органических примесей рассмотрена в разделе 2.2. Там же приведены данные по влиянию сталей и сплавов на процесс самопроизвольной полимеризации акриловой кислоты.  [c.80]


Поведение металлов и сплавов в естественных водных средах различно и определяется их составом и структурой, наличием примесей и распределением их в металле, видом поверхностной обработки. В табл. 2 приведены опытные данные по определению коррозионной стойкости железа, ряда сталей и серого чугуна в 5%-ной соляной кислоте.  [c.27]

Коррозионная стойкость стали может быть повышена путем введения хрома, никеля, молибдена, титана, марганца и некоторых других элементов в различных сочетаниях. Чаще всего встречаются кислотоупорные стали следующих систем железо — хром железо — хром — никель железо — никель — молибден железо — хром — никель — титан железо — хром — никель — марганец и т. д. Эти сплавы принадлежат к нержавеющим сталям. Большинство из них отличается высокой коррозионной устойчивостью в различных агрессивных средах, что объясняется их способностью переходить в пассивное состояние благодаря образованию на поверхности защитных пленок.  [c.13]

Эти стали и сплавы используют при различных напряжениях, температурах и в разных средах (на воздухе и в коррозионноактивных). Разнообразные по составу и свойствам пружинные стали целесообразно распределить на стали и сплавы 1) с высокими механическими свойствами — это углеродистые и легированные стали, которые должны в первую очередь иметь высокое сопротивление малым пластическим деформациям (предел упругости или предел пропорциональности), высокий предел выносливости и повышенную релаксационную стойкость при достаточной вязкости и пластичности (табл. 28) 2) с дополнительными химическими и физическими свойствами немагнитные, коррозионно-стойкие, с низким и постоянным температурным коэффициентом модуля упругости, с высокой электропроводностью и др.  [c.407]

Большинство высоколегированных сталей и сплавов широко используют и как коррозионностойкие материалы. Однако под действием агрессивной среды в сварных соединениях могут наблюдаться различные виды коррозионного разрушения, связанные с перераспределением хрома. Под действием критических температур (500...800°С) по границам зерен выделяются карбиды, обогащенные хромом. Одновременно происходит обеднение хромом приграничных слоев зерен, которое ведет к потере стойкости к действию агрессивной среды и появлению межкристаллитной коррозии. Межкристаллитная коррозия наблюдается в металле шва, околошовной зоны или в узкой зоне на границе сплавления (ножевая коррозия). Появление ножевой коррозии может быть связано с условиями нагрева при сварке или эксплуатации изделия в интервале названных ранее температур. Увеличение длительности нахождения в интервале критических температур при сварке многослойных или перекрещивающихся швов, при смене  [c.304]

В технике обычно применяют сплавы металлов, из них наиболее широко используют сплавы железа и углерода — сталь и чугун. Для придания стали высоких прочностных свойств, пластичности, коррозионной стойкости в различных средах, жаропрочности и других свойств в ее состав вводят различные легирующие элементы — Мп, 81, Сг, N1, Т1, Л1 и др.  [c.347]

Коррозионной стойкости тугоплавких металлов в различных агрессивных средах, значительно превосходящей стойкость нержавеющих сталей и никелевых сплавов (хастеллоев), посвящено очень много работ. Этими вопросами занимались и металловеды, и химики, и коррозионисты.  [c.47]

В промышленности также находят применение сплавы на основе карбида хрома [3] с никелевой связкой (10—40%). Эти сплавы не окисляются на воздухе до 1000° С, обладают высокой коррозионной устойчивостью в различных агрессивных средах, а также высокой эрозионной стойкостью и сопротивлением износу при комнатной и повышенных температурах, в несколько раз превышаюш,их стойкость нержавеющей стали. Ниже приведен пример высоких физических и механических свойств одного из подобных сплавов  [c.423]


Таким образом, коррозионное разрушение тех или иных конструкционных материалов в жидких металлах может происходить в результате протекания различных процессов. Обычно разрушение бывает следствием одновременного протекания нескольких процессов. Доля влияния отдельных процессов, их взаимодействие зависят от природы твердого и жидкого металла, температуры и ее перепада в системе, скорости движения жидкого металла и наличия в нем примесей. Однако для каждого жидкого металла, используемого в качестве теплоносителя, имея в виду его взаимодействие со сталями, можно указать фактор, который обычно доминирует в процессе коррозии. В среде тяжелых металлов — висмута, свинца и их сплавов — определяющим фактором в коррозионном поражении является простое растворение и термический перенос массы. В натрии, калии и их сплавах коррозионная стойкость зависит в наибольшей степени от примеси кислорода в жидком металле. В литии и ртути на металлы могут оказать воздействие термический перенос массы и действие примесей в равной мере.  [c.264]

Обладая такими свойствами, как малая плотность, высокая теплопроводность и низкое электрическое сопротивление, высокая пластичность и коррозионная стойкость, достаточно высокие прочностные свойства (особенно в сплавах), и многими другими ценными качествами, алюминий получил исключительно широкое распространение в различных отраслях современной техники и играет важнейшую роль среди всех цветных металлов. Он во многих случаях с успехом заменяет другие металлы — медь, свинец, цинк и нередко используется вместо стали. Его широкому внедрению способствует наиболее низкая стоимость среди всех цветных металлов, и поэтому мировое производство алюминия неизменно растет и в настоящее время превышает 20 млн т в год, уступая только стали.  [c.18]

При введении >12% Сг железо.становится коррозионностойким в атмосферных условиях, поэтому железохромистые сплавы называют нержавеющими. Хром также повышает коррозионную стойкость железных сплавов в ряде других сред, преимущественно окислительных, что, например, широко используется при изготовлении аппаратуры для производства азотной кислоты. Во многих средах нержавеющие хромистые и хромоникелевые стали, а также высокохромистые чугуны показывают высокую коррозионную стойкость. Эти стали и чугуны используются при изготовлении коррозионностойких изделий и химической аппаратуры различного назначения.  [c.483]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]

Третье издание справочника было выпущено в 1973 г. под названием Коррозионная стойкость нержавеющих сталей н чистых металлов . Приведены показатели коррозионной стойкости нержавеющих сталей, сплавов и чистых металлов во многих химических средах различной концентрации и при разных температурах, химический состав нержавеющих сталей и сплавов, режимы оптимальной термической обработки, методы удаления окалины, механические и другие свойства, а также ГОСТы и ТУ на постйвку металла. Рассмотрено влияние некоторых видов обработки н новых методов выплавки на коррозионную стойкость сталей и сплавов, условия повышения их коррозионной стойкости и основные виды коррозии.  [c.2]

Для изготовления стоек, дистанционирующих элементов и различных деталей крепления поверхностей нагрева, работающих при высокой температуре в среде дымовых газов, широко используется сталь марки Х23Н18. Однако она подвергается интенсивной коррозии в продуктах сгорания мазутов. Так, стойки конвективных пароперегревателей, изготовленные из этой стали, разрушаются за 5—6 мес при температуре газов около 800 °С. Глубина коррозии стали в таких условиях составляет 7—8 мм за 10 ч. Данные по коррозионной стойкости в продуктах сгорания мазута сталей и сплавов, пригодных для изготовления различных конструктивных элементов топочного пространства, приведены на рис. 13.3 [61. Эти данные, а также результаты промышленного опробования  [c.237]

Несмотря на то что нержавеющие стали и сплавы созданы специально для эксплуатации в различных агрессивных средах, их коррозионная усталость изучена меньше, чем углеродистых сталей. В ранних работах, выполненных в 20-х годах Мак Адамом и другими исследователями, показано, что нержавеющие стали хорошо сопротивляются коррозионноусталостному разрушению в пресной воде и ее парах, 3 %-ном растворе Na I, а также других сравнительно малоагрессивных средах. Однако некоторые нержавеющие-стали, например мартенситного класса, обладая высокой коррозионной стойкостью в ненапряженном состоянии, имеют низкое сопротивление коррозионной усталости. Часто условный предел коррозионной выносливости этих сталей такой, как и обычных углеро-  [c.58]


При подготовке инженеров-механиков специализации 170506 Техника антикоррозионной защиты оборудования и сооружений важнейшей составляющей ядра знаний являются сведения о конструкционных материалах, обладающих повышенной коррозионной стойкостью в средах различной агрессивности. Владение этими сведениями позволяет выпускникам специализации осуществлять грамотный, с казной точки зрения, подбор материалов для создания ответственных металлоконструкций или использовать детали и узлы оборудования, выполненные ю материалов повышенной коррозионной стойкости. Поэтому курс Коррозионностойкие стали и сплавы , читаемый студентам УГНТУ по кафедре Материаловедение и защита от коррозии в 9 семестре, является одним из базовых предметов специализации.  [c.3]

Известно, что высокая коррозионная стойкость в различных средах достигается благодаря тому, что металл переходит в пассивное состояние. Это касается и аморфных, и кристаллических сплавов, содержащих хром, в частности нержавеющих сталей. В чистых кислотах, не содержащих таких сильноокисляющих ионов, как хло-рид-ионы, -например в водных растворах серной кислоты, катодная поляризация приводит к тому, что нержавеющая сталь переходит в пассивное состояние. На рис. 9.13 представлены результаты рентгеновской фотоэлектронной спектроскопии (РФС) чистого кристаллического железа и двойных сплавов Fe — Сг, пассивированных в  [c.258]

Все коррозионностойкие стали и сплавы пассивируются в рабочих средах причем наиболее высокой стойкостью обладают те стали ко торые имеют более широкий интервал потенциалов пассивации (и мн нимальное значение тока пассивации) Возникновение пассивного состоя ния зависит от природы металла, свойств внешней среды и действия внешних факторов (концентрации раствора температуры напряжении и т д) Имеются различные теории пассивности металлов (пленочная адсорбционная пассивацнонного барьера электронных конфигурации и др) что связано со сложностью явления пассивности Наиболее пол но объясняет явление пассивности и в частности пассивность коррози ониостойких сталей пленочно адсорбционная теория которая связы вает их высокую коррозионную стойкость с образованием тонкой н плотной защитной пленки под которой находится слой кислорода, хемо сорбированного металлом Кислород концентрируясь на активных участ ках пленки служит переходным слоем от металла к защитной пленке, улучшает их сцепление и переводит металл в пассивное состояние  [c.260]

В дсвятитомном справочном руководстве Коррозия и защита химической аппаратуры , в книгах Д. Г. Туфанова Коррозионная стойкость нержавеющих сталей и чистых металлов и Г. Я. Воробьевой Коррозионная стойкость материалов в агрессивных средах химических производств обобщен обширный материал о коррозионной стойкости металлических и неметаллических материалов в различных средах, описаны методы коррозионных испытаний, даны примеры использования промышленных марок сталей и сплавов. Вместе с тем в указанных изданиях полностью отсутствуют или недостаточно полно представлены физические, механические и технологические свойства материалов, а также техническая документация на их поставку и выпускаемый сортамент, что часто является препятствием для оптимального выбора соответствующей марки стали или сплава. Кроме того, в них отсутствуют данные о новых перспективных марках, разработанных в последние годы.  [c.3]

На основании отечественных и зарубежных литературных данных, а также результатов работ, выполненных авторами, излагаются сведения о нержавеющих и кислотостойких сталях, получивших широкое применение в промышленности и разработанных в последнее время. Рассматриваются структурные особенности этих сталей, их механические, коррозионные и технологические свойства, а также влияние легирования. Приводятся рекомендации по производству и применению этих сталей и сплавов, а также справочные данные о коррозионной стойкости в различных средах. Илл. 159. Табл. 102. Библ. 180 назв.  [c.2]

Большинство высоколешрованных сталей и сплавов широко используются и как коррозионно-стойкие материалы. Однако под действием агрессивной среды в сварных соединениях могут наблюдаться различные виды коррозионного разрушения. Под действием критических температур (500—800° С) по границам зерен из твердого раствора могут выпадать карбиды, обогащенные хромом. Обеднение в результате этого пограничных слоев зерен хромом ведет к потере ими стойкости к действию агрессивной среды и появлению межкристаллитной коррозии (см. гл, II). В металле, пораженном этим видом коррозии, наблюдается потеря механической связи между отдельными зернами или кристаллитами, Межкристаллитная коррозия может происходить в металле шва, захватывая его весь или частично, в ме-  [c.382]

В качестве металлических покрытий могут быть применены различные металлы, интерметаллиды (берилли-ды, алюминиды), жаростойкие и нержавеющие стали и сплавы и т. п. Такие покрытия могут создавать токопроводящие слои дополнительную стойкость против воздействия внещней среды — температуры (жаростойкость), агрессивных атмосфер (коррозионная стойкость) и т. п. поверхностное упрочнение деталей для повышения износостойкости, твердости, усталостной прочности.  [c.9]

Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9].  [c.301]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]


В установках для подготовки нефти используют оборудование различного назначения теплообменники, насосы, дегидраторы, резервуары и др. Среди них наиболее металлоемкие и весьма ответственные резервуары, предназначенные для предварительного отстоя обводненной нефти, сбора и отстоя сточной воды, сбора и хранения товарной нефти и нефтепродуктов. Исходя из условий эксплуатации резервуаров, к конструкционному материалу предъявляют сложный комплекс требований он должен обладать высокой прочностью при достаточно высокой пластичности и вязкости, минимальной склонностью к хрупкому разрушению, хладоломкости и старению, низкой чувствительностью к надрезам, хорошей свариваемостью, высокой коррозионной стойкостью к воздействию атмосферы, грунтовых вод, хранимых нефтей и нефтепродуктов. Основной конструкционный материал для изготовления резервуаров — сталь различных марок. В последние годы получают все большее распространение алюминиевые сплавы для изготовления отдельных узлов резервуаров — крыш и верхних поясов вертикальных цилиндрических резервуаров.  [c.164]

На рис. 41 и 42 представлены данные по коррозионной стойкости различных металлов в кипящей серной кислоте — среде, особенно агрессивной, в которой нержавеющая сталь совершенно нестойка, а никель-молибдено-вый сплав ("хастеллой ) стоек лишь при небольших концентрациях кислоты (см. рис 3). Данные, представленные на рис. 41, заимствованы из работы [38], а на рис. 42 из работ автора с сотрудниками, в которых исследовались сплавы ванадия [51], ниобия [52], молибдена [53] и тантала [54].  [c.52]

Коррозионная стойкость композиционного материала алюминий— коррозионно-стойкая сталь исследована в работе [28]. Материал марки КАС-1 на основе алюминия, армированный 40об.% проволоки диаметром 0,15 мм из коррозионно-стойкой стали 18Х15Н5АМЗ (ВНС-9), выдерживался в течение двух месяцев в различных коррозионных средах — тропической камере, морской воде и в соляном растворе. Испытаниям подвергались пластины как с открытыми, так и с изолированными торцами, с выходом волокон на торцах. Результаты приведены в табл. 66 в сравнении с результатами полученными для алюминиевого сплава АД1. Материал КАС-1 обладает удовлетворительной коррозионной стойкостью во всех климатических условиях, торцы имеют низкую коррозионную стойкость и должны быть надежно защищены [28]  [c.229]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]

Большой интерес представляют данные по изменению потерь веса у хромоникелевых сталей с 10% Ni и переменным содержанием хрома в трех средах, применяемых в качестве реагентов при испытании сплавов на межкристаллитную коррозию (рис. 282). Как видно, границы коррозионной стойкости в зависимости от содержания хрома для каждой среды различны. В азотной кислоте и в смеси серной кислош и медного купороса пассивирование стали наступает при меньшем содержании хрома, чем в смеси плавиковой и азотной кислот.  [c.495]

Нержавеющие стали — сплавы на основе железа, легированные хромом или хромом и никелем, а также и другими элементами, коррозионная стойкость которых обусловлена, в первую очередь, их пассивными свойствами. Поэтому проводят многочисленные исследования по изучению влияния различных факторов—состава, среды, температуры, на повышение пассивируемости сталей этого класса. Электрохимическое поведение основных компонентов этих сталей—железа, хрома, никеля в 1 iVH2S04 показано па рис. 44 [27]. Очевидно, что хром имеет наиболее отрицательное значение потенциалов пассивации Еп и полной пассивации Еап-, а также и минимальный ток растворения в пассивном состоянии fnn по сравнению с железом и никелем. В соответствии с этим при повышении содержания хрома в сплавах с железом происходит смещение Еа и Еаа в отрицательную сторону, а также наблюдается уменьшение in и inn (рис. 45). Многими исследователями было отмечено, что изменение этих характеристик происходит наиболее резко при увеличении содержания хрома от 12 до 13%, как показано на рис. 46 [118]. При легировании железа никелем пассивируемость сплавов также возрастает [84, 119], но в гораздо меньшей степени, чем при легировании железа хромом. Пассивные свойства сплавов Fe — Ni являются промежуточными между пассивными свойствами чистых металлов. Введение в состав хромистых сталей 8% Ni и более приводит к уменьшению тока пассивации in но смещает потенциал пассивирования Еа в положительную сторону [84, 118] (рис. 47). Легирование нержавеющих сталей небольшими количествами  [c.73]


Смотреть страницы где упоминается термин Коррозионная стойкость сталей и сплавов в различных средах : [c.68]    [c.4]    [c.28]    [c.362]    [c.287]    [c.2]    [c.571]    [c.440]    [c.43]   
Смотреть главы в:

Коррозионностойкие стали и сплавы  -> Коррозионная стойкость сталей и сплавов в различных средах



ПОИСК



Коррозионная pH среды

Коррозионная стойкость сталей и сплавов

СРЕДЫ - СТАЛЬ

Сплавы Коррозионная стойкость

Сплавы Сталь

Сталь Коррозионная стойкость

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте