Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы жаропрочные на основе хрома

Сплавы жаропрочные на основе хрома 1314  [c.1652]

Жаропрочные и жаростойкие сплавы получают на основе системы никель - хром с легирующими добавками вольфрама, молибдена, титана, алюминия. Они стойки к образованию окалины на поверхности в газовых средах при нагреве свыше 500 °С. Повышенная длительная прочность, высокое сопротивление ползучести и усталости достигаются за счет введения в сплавы  [c.464]


Чистый хром обладает малой пластичностью (см. табл. 54). Особенно резко он охрупчивается при загрязнении азотом. Легирование заметно повышает пластичность и жаропрочность хрома. Например, добавка рения улучшает деформируемость хрома. Наиболее сильно упрочняют хром добавки (до 1%) Т1, N5, Та или 2г, а также до 10% Такие сплавы пригодны для работы при 980—1095° С. Существующие сплавы на основе хрома все же хрупкие, особенно на холоде.  [c.153]

Температура плавления металлов является достаточно хорошим показателем прочности межатомных связей в кристаллической решетке. Чем ниже температура плавления металла, тем больше коэффициент термического расширения и, следовательно, быстрее при нагреве наступает разупрочнение. Поэтому для создания жаропрочных сплавов используют металлы с высокой температурой плавления (железо, никель, кобальт). Еще более жаропрочными оказываются сплавы на основе хрома, молибдена и других тугоплавких металлов.  [c.255]

Жаропрочные сплавы для работы при высоких температурах (до 700—950°С) создаются на основе железа, никеля и кобальта, а для работы при очень высоких температурах (до 1200—1500°С) — на основе хрома, молибдена и других тугоплавких металлов (рис. 144).  [c.319]

При очень высоком нагреве стали, даже очень высоколегированные, не имеют необходимой жаропрочности и заменяются сплавами на никелевой основе (в том числе, с кобальтом) и тугоплавкими сплавами на основе хрома, но более часто молибдена и ниобия.  [c.401]

Весьма перспективными являются жаропрочные сплавы на ос-цове тугоплавких металлов, таких как молибден, хром, титан, ниобий, тантал и др., если устранить недостатки, которыми некоторые из них обладают. Так, основным недостатком сплавов на основе хрома является их хрупкость, а сплавов на основе молибдена, ниобия и тантала — их окисление. Разработка высокотемпературных защитных покрытий позволит шире использовать сплавы на основе молибдена, ниобия и тантала.  [c.186]

Сплавы на основе хрома, в частности, относящиеся к системе хром — молибден — железо, обладают весьма высокой жаропрочностью и жаростойкостью.  [c.760]

Жаропрочный сплав на основе хрома 3—6 V 2—3 81 б-.9 МйО Для деталей различных машин, работающих при высоких температурах (1200—1400° С), нагревательные стержни электропечей  [c.59]

Многие жаропрочные сплавы (ЖС) разрабатывались на основе никеля. В целях улучшения жаропрочности и других специфических свойств они легируются другими жаропрочными элементами. Основными легирующими элементами в жаропрочных сплавах являются хром (5 - 22%), алюминий (0,5 - 6,0%) и титан (1,5 -3%) (табл. 5).  [c.34]


Хром (Сг) и его сплавы обладают более высокой жаропрочно-стыа и повышенной стойкостью в окислительных и эрозионных средах при высокой температуре, чем сплавы на основе никеля. Он имеет температуру плавления 1875°С, кипения 2.500°С (см. рис. 16), плотность 7,15 г/см, атомную массу - 52,01. Расположен в Периодической системе элементов Д. И. Менделеева в подгруппе VI А (Сг, Мо, W) под номером 24 и имеет атомный радиус / = 0,128 нм. Кристаллическая структура хрома - кубическая объемно центрированная, а = 0,287 нм.  [c.84]

За рубежом суперсплавы на основе никеля, кобальта и хрома применяются как жаропрочные сплавы для изготовления лопаток ГТД и др.  [c.90]

Электродуговые печи применяют для плавки всех жаропрочных сплавов на основе железа, никеля, титана, хрома, а также легированных тугоплавкими металлами. Нагревание металлической шихты с помощью электрического тока позволяет легче осуществить быстрый подъем температуры в ванне, точнее регулировать скорость нагрева расплавленного металла, создать жидкоподвижный шлак над зеркалом жидкого металла и самое главное позволяет вести металлургические процессы в различной атмосфере при любом давлении как в вакууме, так и при давлении выше атмосферного.  [c.242]

Установлено, что для образования неограниченных твердых растворов необходимо, чтобы радиусы атомов сплавляемых металлов отличались не больше чем на 15% один от другого. В сплавах на основе железа, хрома, никеля образование неограниченных твердых растворов происходит только тогда, когда атомные радиусы растворяемых элементов отличаются от атомного радиуса железа не более чем на 8%. Для жаропрочных сплавов на основе никеля при легировании их тугоплавкими элементами первой группы (Сг, Мо, W), имеющими атомные радиусы соответственно 0,128 0,140 и 0,141 нм отличаются от атомного радиуса (0,125 нм) никеля на 2,4 10,7 и 11,3%.  [c.410]

Жаропрочные сплавы на никелевой основе. Содержание никеля в этих ставах больше 55%, углерода от 0,02 до 0,16%, а хрома около 20%. В зависимости от количества легирующих элементов эти сплавы подразделяются на нихромы и нимоники.  [c.106]

И упрощения конструкции были применены для крепления сквозные болты (рис. 4-16). Первая ступень рабочих лопаток сделана из жаропрочного сплава на основе кобальта марки 5-816, вторая ступень рабочих лопаток — из жаропрочной хромистой стали, содержащей 12% хрома, вольфрам, молибден и ванадий, марки Тигельная 422 . Рабочие лопатки крепятся в осевые пазы с елочной нарезкой. Сначала направляющие лопатки первой ступени делались из нержавеющей жаропрочной стали. Последние турбины имеют литые диафрагмы из жаропрочного сплава Х-40. Диафрагмы машин, предназначенных для работы на мазуте, охлаждаются воздухом, который отбирается из кольцевого пространства камеры сгорания и проходит через отверстия в направляющих лопатках радиально к валу, меняет направление в специальных каналах, сделанных во внутренних кольцах диафрагмы, и входит в поток газов перед входной кромкой направляющих лопаток. Вторая ступень направляющих лопаток не охлаждается.  [c.137]

В паяемых конструкциях применяют стали всех типов, чугуны, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и бериллия (табл. 47). Ограниченное применение имеют сплавы на основе тугоплавких металлов хрома, ниобия, молибдена, тантала и вольфрама.  [c.239]

Достаточной прочностью при высоких температурах обладают соединения жаропрочных сплавов, паянных припоями на основе никеля. Легирующими компонентами, способствующими повышению жаропрочности, служат хром, кремний, молибден и некоторые другие элементы.  [c.241]

Так, например, жаропрочные стали на основе железа можно эксплуатировать при температурах до 700° С, алюминиевые и медные сплавы — до 400-450 °С, свинец — до 150 °С. Эффективное сочетание жаропрочности и жаростойкости достигается в сплавах системы никель-хром — до 1000° С.  [c.22]


Были сделаны попытки изыскания жаропрочных сплавов на основе системы железо—никель (без хрома), но они не увенчались успехом.  [c.222]

Для твердых растворов на основе железа влияние кри сталлической структуры на жаропрочность также весьма существенно На рис 177 приведена зависимость стрелы прогиба, характеризующей скорость ползучести сплавов системы Fe—Сг, от концентрации хрома При температуре 650 °С все сплавы являются ферритными и повышение со держания хрома уменьшает скорость ползучести При  [c.298]

Под твердыми сплавами понимают сплавы на основе карбидов тугоплавких металлов (вольфрама, титана, хрома), связанных кобальтом, легированной сталью или же жаропрочным сплавом на основе никеля.  [c.178]

Быстрое развитие ракетной техники, реактивной и турбореактивной авиации привело в последние годы к увеличению потребности в материалах, характеризующихся хорошими прочностными характеристиками при высоких температурах. Такие материалы в отличие от жаростойких называются ж а р о -п р о ч н ы м и. В принципе, жаростойкость не всегда сопутствует жаропрочности. Например, сплавы на основе железа или никеля, легированных хромом или алюминием, весьма стойки в окислительных средах пр высокой температуре, но характеризуются значительным ухудшением механических свойств с ростом последней. С другой стороны, тугоплавкие металлы (вольфрам, молибден, осмий), сохраняющие при высоких температурах свои механические свойства, легко окисляются, причем часто с катастрофической скоростью.  [c.74]

Однако следует иметь в виду, что это относится к обычным жаропрочным сталям и сплавам на железной, никелевой или кобальтовой основе, критический интервал хрупкости которых располагается в области отрицательных температур. Испытания на термоусталость в температурном диапазоне 20ч 1200°С некоторых сплавов на основе хрома, у которых температура хрупкого перехода сотавляла 30—50° С, показали, что все разрушения происходят при нижней температуре цикла, когда пластичность материала невелика. Вместе с тем при верхней температуре цикла эти сплавы имеют высокую пластичность. Для таких материалов деформационный критерий термоусталостной прочности должен учитывать минимальное значение предельной пластичности.  [c.126]

В работах Института металлургии и материаловедения им. А. А. Байкова (ИМЕТ) показано, что есть по крайней мере два пути преодоления указанных причин деградации композитов типа W/Ni-суперсплав замена активной к вольфраму матрицы на Ni-основе на менее активную матрицу на основе другого металла понижение активности никеля в Ni-сплаве за счет его связывания в термически стабильные соединения. Анализ двойных и тройных диаграмм состояния с участием вольфрама и металлов, являющихся основой жаропрочных или жаростойких сплавов, включая никелевые, показал, что возможно использование нескольких типов металлических или интерметаллидных матриц, упрочненных волокнами из высокопрочных вольфрамовых сплавов. Так, благоприятной основой для жаростойкой матрицы являются сплавы хрома, поскольку в системе W—Сг отсутствуют интерметаллиды, имеется широкая область сосуществования двух твердых растворов (на основе хрома и на основе вольфрама), что исключает активное взаимодействие W-волокна с Сг-матрицей по крайней мере до 1400 °С. На границе волокно—матрица возникает тонкий термически стабильный промежуточный слой из двух находящихся в равновесии твердых растворов W—Сг, ширина которого на порядок ниже ширины реакционной зоны в композитах с Ni( o, Ре)-матрицами. Кроме того, в отличие от композитов W/Ni в композитах W/ r отсутствуют приповерхностные зоны рекристаллизации W-волокна, так как хром не является поверхностно-активным к вольфраму. Благодаря этому W-волокно в Сг-матрице остается нерекристал-лизованным вплоть до 1400 °С.  [c.216]

Сплавы второй группы содержат повышенное количество углерода и карбидообразуюш ие элементы. При старении сплавов этой группы упрочняющей фазой являются карбиды, которые выделяются внутри зерен. Сплавы на основе ванадия и хрома — наименее жаропрочны, тем не менее при 800 — 1000 °С сплавы ванадия превосходят железные и никелевые сплавы, а сплавы на основе хрома благодаря жаростойкости применимы до 1000- 1100°С.  [c.506]

Сложнолегирсванные сплавы железа на основе системы железо—хром обладают высокой жаропрочностью и жаростойкостью. Они служат основой коррозионно-стойких сталей. Главный легирующий компонент — никель.  [c.419]

При кратковременной пайке жаропрочных сплавов на никелевой и железной основах припоями на основе N1 — Мп, N1 — Мп — Сг (с низким содержанием хрома) получаются маложаропрочные паяные соединения с низкой температурой распая. При диффузионной пайке таких сплавов припоями на основе N1 — Сг —Мп в результате диффузии упрочняющих легирую-  [c.173]

Структурное состояние жаропрочных никель-хромовых сплавов после технологической термической обработки является нестабильным, и в процессе эксплуатации возможно протекание различных структурных изменений, связанных как с зарождением и развитием новых фаз, так и с эволюцией существующих фаз. Нестабильность первого рода может быть связана с выделением охруп-чикяютиу типя гт-фя кг пг-твеппого раствора на основе хрома и С перерождением у -фазы в г - или 8-фазы. Отрицательное влияние таких превращений на свойства жаропрочных сплавов определяется как морфологией выделяющих фаз, так и изменением состава твердого раствора. Другой тип нестабильности обусловлен продолжением при эксплуатации превращений, начавшихся в ходе технологической термической обработки, и заключается в протекании процессов выделения, роста и растворения у -фазы, а также карбидных, карбонитридных и боридных фаз. Это способствует снижению значений эксплуатационных характеристик, и в первую очередь предела длительной прочности.  [c.8]


Разработка сплавов типа САП и САС (спеченные алюминиевые сплавы) иовлекла за собой многочисленные попытки получения жаропрочных комлозици-он ных материалов на основе более тугоплавких матриц титана, молибдена, железа, кобальта, никеля, тантала, меди, хрома и ванадия. В качестве дисперс-. ной фазы в сплавы пробовали вводить окислы, карбиды, нитриды и бориды. Однако здесь многих ис-, следователей постигла неудача из-за отсутствия фундаментальных сведений о природе взаимодействия на границе разнородных компонентов.  [c.77]

Тугоплавкие металлы и их сплавы. К числу тугоплавких условно относятся Сг и металлы V, Rh, НГ, Ru, Ir, Mo, Та, Nb, Os, Re и VV, температура плавления которых выше 1875 С — температуры плавления хрома. Все они имеют объемноцептрировапиую кубическую решетку. Проблема получения технических тугоплавких металлов и создания тугоплавких сплавов вызвана требованиями сверхзвуковой авиации и ракетной техники и турбостроения, т. е. требованиями сохранять дпсгаточпую прочность при 1100°С и даже при более высокой температуре, вместо 650—870 °С, до которой способны работать жаропрочные стали и сплавы на основе Ni и Со.  [c.328]

Керамической основой в кермете служат окислы и металлоподобные соедИ нения карбиды, бориды, силициды и нитриды — таких переходных металлов, как Si, Ti, Zr, Mo и др. Металлической составляющей служаг сплавы группы железа, хром, алюминий. Из керметов на базе карбида титана изготовляют, например, диски и лопатки газовых турбин. Прекрасными материалами с высо кими жаропрочностью и жаростойкостью являются керметы на основе боридов переходных металлов и керметы на оксидной основе.  [c.370]

Эффективность применения насыщения стали карбидообразующими элементами объясняется тем, что получающийся в этом случае диффузионный слой состоит из карбидов этих элементов, отличающихся высокой твердостью, износостойкостью и эрозионной стойкостью, с другой стороны, насыщение поверхности сплавов на нежелезной основе (на основе никеля, молибдена, ниобия) алюминием и хромом сообщает им высокие жаростойкость, предел выносливости и способность к сопротивлению термическим ударам. Особенно эффективным является применение диффузионного хромирования и комплексного насыщения поверхности жаропрочных никелевых сплавов хромом и алюминием (хромоалитирование).  [c.307]

Прочность карбидно-металлических сплавов сохраняется до более высоких температур, чем это наблюдается в жаропрочных сплавах на основе металлов. В отечественной и зарубежной технике сравнительно давно используются сплавы на основе карбидов вольфрама, титана, хрома и др. [5, 23] с такими металлическими связками, как никель, кобальт, молибден, вольфрам и др. Например, сплав, состоящий из 47,5% Т1С, 2,5% СГ3С2 и 50% никеля имеет плотность 6,4 г см , твердость HV 720 кПмм и предел прочности при изгибе а э = 161 кг мм .  [c.423]

Электрохимические никелевые спла-вы типа монель и констаитан, представляющие собой сплавы никеля с медью и железом, имеют на своей поверхности химически нестойкую окисную пленку, которая легко восстанавливается в газовых средах, удаляется флюсованием и при высокотемпературной пайке в вакууме разлагается на кислород и металл. Поэтому пайка этих сплавов не вызывает трудностей. При пайке можно применять припои, флюсы и газовые среды, рекомендо-ванн ые для сталей и меди. Для пайки никелевых сплавов требуются специальные флюсы, поскольку поверхность сплавов, например никеля с хромом (нихромы), покрыта весьма стойкой окисной пленкой, содержащей окислы хрома. При легировании нихрома алюминием и титаном химическая стойкость окисной пленки возрастает, что влечет за собой ряд затруднений при пайке. Пайка жаропрочных сплавов на основе никеля в восстановительных газовых средах требует тщательной их очистки от остатков кислорода с помощью платинового или дуни-тового катализатора, а также дополнительного осушения до точки росы (-70 °С).  [c.254]

Простейшим жаропрочным сплавом на основе железа является сплав ХН32Т, применяемый для длительной службы при температуре 850 С. Ограниченное содержание углерода приводит к тому, что при длительной службе в сплаве образуется небольшое количество карбидов хрома, которое не охрупчивает сплав. Именно поэтому при длительном старении (10 000 ч н выше) при 700—800 °С ударная вязкость не опускается ниже 1000 кДж/м  [c.432]

Жаропрочные сплавы на основе ни-К5ЛЯ. Чистый никель имеет низкую длительную прочность порядка 40 МПа при 800 за 100 ч. Повышение свойств достигается путем комплексного легирования, в результате которого образуются многофазные сплавы, отвечающие требованиям современного машиностроения. Хром, кобальт, молибден, вольфрам, ванадий, гафний упрочняют твердый раствор, основу сплава. Помимо этого, хром играет активную роль в защите сплавов от окисления молибден, вольфрам, ванадий образуют в сочетании с хромом упрочняющие сплав карбидные фазы МеА, Ме Св, МевС.  [c.433]

Развитие жаропрочных никелевых сплавов началось с небольших добавок титана и алюминия к обычному нихрому. Оказалось, что добавление менее 2% титана и алюминия без термической обработки заметно повышает показатели ползучести нихрома при температурах около 700 С. Сплав, содержащий 2,5% титана, 1,5% алюминия, 20% хрома, на основе никеля получил название нимоник-80 и стал первым в больщом ряду последующих модификаций жаропрочных сплавов. Аналог этого сплава — сплав ХН77ТЮ (ЭИ 437). Кроме никеля он содержит 19—22% Сг 2,3—2,7% Т1 0,55—0,95% А1. Широкое применение находит также сплав ХН77ТЮР, дополнительно легированный бором (не более 0,01%). После закалки при 1080—1120°С этот сплав имеет структуру пересыщенного у-раствора с ГЦК-решеткой, небольшую прочность и высокую пластичность, допускающую глубокую штамповку, гибку и профилирование. После закалки и старения при 700 °С сплав приобретает высокую жаропрочность и следующие механические свойства ст, = 1000 МПа, Оо,2 = 600 МПа, б = 25%, у = 28% (рис. 8.8).  [c.206]

Монокристаллические отливки получают как из традиционных, так и специально разработанных для данного процесса сплавов. При создании новых сплавов для монокристаллического литья нет необходимости вводить в них элементы, упрочняющие границы зерен (С, В, Hf, Zr, РЗМ), поскольку не существует большеугловых границ. Поэтому в безуглеродистых сплавах отсутствуют карбиды и остаются только у- и у -фазы. Дальнейшее повышение стабильности сплава (т. е. повышение температур солидуса и полного растворения у -фазы) может быть достигнуто оптимальным его легированием тугоплавкими металлами (W, Та, Re, Мо) и у -стабилизаторами (Ti, Та). Это приводит к существенному торможению контролируемых диффузией высокотемпературных процессов, в том числе коагуляции у -фазы. Важная роль при легировании уделяется рению (до 3%), в основном располагающемуся в у-твердом растворе. Содержащие рений сплавы (например, ЖС36) отличаются более узким интервалом кристаллизации. Так, температуры ликвидуса, солидуса и полного растворения у -фазы в сплаве ЖС36 равны соответственно 1409, 1337 и 1295 °С. Снижение содержания хрома (а следовательно, и жаростойкости) компенсируют добавками Hf и Y, образующими на поверхности плотные жаростойкие оксидные пленки. В связи с применением направленной кристаллизации значительно расширились возможности использования экономно легированных жаропрочных сплавов на основе интерметаллида №зА1. Так, например, установлено, что отливки из этих сплавов с монокристаллической структурой и кристаллографической ориентацией [111] обладают оптимальным сочетанием физико-механических свойств при температурах до 1200 °С высокими показателями жаропрочности, термоусталостной прочности и жаростойкости.  [c.367]


Сплавы на основе никеля, называемые нимониками, используются для работы при более высоких температурах (700-900 °С). Для получения высокой жаростойкости никель легируется хромом (10-20 % ), а для повышения жаропрочности — титаном (1-3 % ) и аллюминием (0,5-5 % ). Также никелевые сплавы легируют молибденом, вольфрамом, ванадием, кобальтом. Наиболее широко применяется никелевый сплав ХН77ТЮР, содержащий кроме никеля приблизительно 20 % Сг, 2,5 % Ti, 1 % AI. Никелевые сплавы подвергаются закалке от 1100-1200 °С на воздухе для получения однородного твердого раствора и старению при 700-750 °С в течение 15-20 ч. Используются никелевые сплавы для деталей авиационных двигателей и газовых турбин.  [c.181]

Марганец, как и никель, расширяет у область в сплавах на основе железа и в многокомпонентных системах, кото рыми являются жаропрочные аустенитные стали Он так же выступает в качестве аналога никеля Это позволяет частично заменить никель менее дефицитным марганцем, причем установлено, что присутствие марганца способствует некоторому повышению жаропрочности сталей Однако стали с полной заменой никеля марганцем, т е на основе Сг—Мп аустенита, не нашли широкого применения в ка честве жаропрочных материалов в связи с их недостаточ ной жаростойкостью и низкой температурой плавления, так как приходится снижать содержание хрома в сталях для обеспечения аустенитной структуры  [c.318]

Благородные металлы дорого стоят и дефицитны, марганец и железо отрицательно влияют на жаропрочность и жаростойкость сплавов на основе кобальта и легирование этими элементами не применяется Поэтому основным иа элементов, стабилизирующим г ц к структуру, в сплавах кобальта является никель Содержание никеля в жаропрочных кобальтовых сплааах обычно составляет 10—30 Важное значение в этих сплавах имеет хром, который обеспечивает высокую коррозионную стойкость и положительно  [c.336]

Детали из X. с. допускают разовый и циклич. кратковременные перегревы до 1500-1600°, т. е. значительно выше темп-ры плавления жаропрочных сплавов на основе железа и никеля. В случае работы деталей при высоких темп-рах (выше 1000°) в окислительной атмосфере и невозможности использовапия сплавов, требующих поверхностной защиты от газовой коррозии (эрозионное воздействие рабочей среды), нек-рые X. с. могут оказаться единственно пригодным конструкционным материалом. Детали из сплавов хрома наиболее успешно работают в условиях стационарного теплового режима и отсутствия ударных нагрузок.  [c.424]


Смотреть страницы где упоминается термин Сплавы жаропрочные на основе хрома : [c.235]    [c.299]    [c.340]    [c.15]    [c.222]    [c.198]    [c.215]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.1314 ]



ПОИСК



Жаропрочность

Жаропрочные КЭП

Жаропрочные сплавы на основе Со

КЭП на основе хрома

Основы жаропрочности

Сплавы жаропрочные

Сплавы на основе

Сплавы на основе хрома

Хром и сплавы хрома

Хрома

Хрома сплавы

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте