Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологические свойства и технологические пробы металлов

Технологические свойства и технологические пробы металлов  [c.51]

Испытание физико-механических свойств листового металла и технологические пробы  [c.425]

Труд охватывает следующие методы испытания металлов макроанализ, микроанализ, рентгеноструктурный анализ, термический анализ, физические методы исследования металлов, методы испытания механических свойств, методы испытания твердости и технологические пробы. Книга широко используется в заводских лабораториях, научно-исследовательских институтах и высших учебных заведениях.  [c.10]


Качество прокалки контролируют путем выдержки контрольных проб в воде или во влажной атмосфере. Кроме того, проверяют сварочно-технологические свойства электродов и качество металла шва в соответствии с требованиями ГОСТ.  [c.126]

Испытания технологических свойств металлов называют технологическими пробами. Технологические пробы осуществляют несложными способами. Целью этих испытаний является выявление способности металла к тем или иным деформациям, которым он подвергается при работе или обработке как в холодном, так и в горячем  [c.16]

В настоящее время изучено влияние механического давления на структуру, механические и специальные свойства чистых металлов (А1, Си, Zn) и различных сплавов на их основе. При этом структуру и свойства изучали не на специально отлитых образцах или технологических пробах, а на образцах, вырезанных из прессованных во время кристаллизации слитков и фасонных отливок.  [c.119]

Испытания на изгиб рекомендуются для определения механических свойств хрупких и малопластичных при растяжении металлов. Их широко используют в практике коррозионных испытаний и при приемочном контроле металлов как технологическую пробу для оценки пластичности и штампуемости материала, качества сварки и т. д. (ГОСТ 14019—68, 13813—68, 3728—78, 1579—63).  [c.39]

Технологические пробы. Технологические пробы для оценки качества сплавов разделяются на характеризующие состав металла (по излому), свойства металла в жидком состоянии жидко-текучесть) и свойства охлаждающейся отливки - I (усадка).  [c.352]

Испытания физико-механических свойств все же не дают окончательного суждения о пригодности металла для целей холодной штамповки, и дополнительные показатели получаются путем производства так называемых технологических проб.  [c.426]

В производственных условиях технологические пробы осуществляются для 1) быстрой оценки состава металла 2) характеристики свойств жидкого металла и 3) свойств охлаждающейся отливки. С технологическими пробами связаны также некоторые вопросы, относящиеся к изготовлению образцов для механических испытаний.  [c.244]

Контроль материалов должен обеспе-, чить соответствие применяемых марок сталей и сварочных материалов требованиям стандартов и технических условий. Он включает в себя определение химического состава и механических свойств используемых плавок сталей и партий сварочных материалов (проволока, электроды, сварочные флюсы и защитные газы). Для сварных конструкций из аустенитных сталей обязательной является также проверка сопротивляемости металла шва образованию трещин, осуществляемая путем сварки жестких технологических проб.  [c.94]


В целях получения продукции одинакового качества с различных заводов-изго товителей выпускаются ГОСТ на изделия — фланцы, трубы, арматуру и т. д., а для установления одинаковых методов проверки свойств металлов имеются ГОСТ на производство испытаний на растяжение, на ударную вязкость, на гидравлическое испытание и т. д. и на производство технологических проб загиб, бортование, раздачу и т. д.  [c.33]

Качество и основные характеристики электродов должны быть подтверждены сертификатом завода-изгото-вителя. При этом потребителем могут быть проверены технологические свойства электродов, а также твердость наплавленного металла, для чего проводится наплавка контрольной пробы от проверяемой партии электродов.  [c.401]

Технологические свойства определяются при технологических испытаниях (пробах), которые дают качественную оценку пригодности металлов и сплавов к различным способам обработки. Некоторые виды технологических испытаний приведены в конце следующего раздела.  [c.33]

Технологические испытания. В ряде случаев для качественной или сравнительной оценки технологических свойств металла пользуются технологическими пробами (рис. 1.14). Испытания проб показывают способность металла претерпевать определенные деформации, аналогичные получающимся в конкретных условиях работы. Такими пробами являются пробы на изгиб, навивание, выдавливание, осадку. Пробы на изгиб выполняют для плоского, фасонного и специального проката, труб, сварных швов, чтобы избежать при их изготовлении трещин, надрывов, изломов и др. Изгиб может быть на определенный угол (рис. 1.14, а), до параллельности (рис. 1.14, б) и соприкосновения сторон (рис. 1.14, в). Производят также пробы на сплющивание труб (рис. 1.14, г). Пробы на навивание выполняют для проволоки из черных и цветных металлов диаметром от 0,2 до 10 мм. Кусок проволоки навивают от 5 до 10 витков на оправку заданного диаметра или на такую же проволоку. Проба на выдавливание служит для определения пригодности металла к холодной штамповке и вытяжке. Проба на осадку определяет способность холодного металла принимать заданную форму при сжатии.  [c.44]

Аналогично тому, как это делается при рассмотрении влияния концентраторов напряжений на механические свойства материалов, при коррозионном поражении металла необходимо рассматривать прочностную, деформационную и энергетическую чувствительности металла к коррозионным поражениям. Таким образом, необходимо знать характеристики прочности (а , и s ), характеристики пластичности ( 10, ф) и ударную вязкость (а ) металла, пораженного коррозией. Хорошей характеристикой является также технологическая проба на перегиб и закручивание, очень чувствительная к изменению пластичности материала.  [c.65]

Химический состав стали играет определяющую роль в формировании механических и технологических свойств, а также в обеспечении после соответствующей обработки требуемых эксплуатационных свойств деталей. На металлургических заводах химический состав сталей, как правило, определяют по ковшевой пробе. Однако в дальнейшем при затвердевании слитка происходят ликвационные явления, приводящие к различию состава по сечению слитка. В результате химический состав готового проката может отличаться от состава, определенного по ковшевой пробе. В связи с этим для некоторых сталей ответственного назначения металлурги определяют химический состав металла по ковшевой пробе, в передельной заготовке и даже в готовом прокате. При определении химического состава металлопроката должны соблюдаться требования ГОСТ 7565—81.  [c.445]

Статистическое регулирование хода технологического процесса и контроль качества обрабатываемых изделий осуществляется путем взятия, в разное время рабочей смены, проб из только что обработанной продукции или в процессе выполнения технологических операций. Контролируемыми параметрами качества могут быть размеры, геометрическая форма изделий, твердость, химический состав металла, механические свойства материалов деталей, толщина различных покрытий, степень окрашенности поверхпостей, качество сборки и др. В литейных цехах контролируемыми параметрами качества могут быть плотность набивки форм, влажность, газопроницаемость, температура, прочность и др.  [c.589]


Под технологическими свойствами металлов и сплавов понимают их способность подвергаться различным видам обработки, например, ковке, штамповке, сварке и т. д. Технологические свойства определяют по технологическим пробам, которые дают качественную оценку пригодности металлов и сплавов к тем или иным способам обработки.  [c.105]

Обрабатываемостью называют способность металла поддаваться обработке резанием. В ряде случаев для качественной или сравнительной оценки технологических свойств металла пользуются технологическими пробами (рис. И). Испытания проб показывают способность металла претерпевать определенные деформации, аналогичные получающимся в конкретных условиях работы.  [c.26]

Технологическими пробами называют испытания металлов, выполняемые несложными способами и без тщательного измерения наблюдаемых свойств. Некоторые технологические пробы стандартизованы, т. е. проводятся по определенным правилам. Этими правилами установлены размеры и формы образцов испытуемых металлов, инструментов и приспособлений для выполнения пробы.  [c.49]

Эти свойства металлов определяют технологическими пробами. Технологическими пробами называются простейшие испытания без применения сложных машин и измерений.  [c.12]

Испытание на изгиб — один из основных и широко распространенных видов испытания материалов [2] — рекомендуется для определения механических СВОЙСТВ хрупких и малопластичных при растяжении металлов (чугунов, инструментальных сталей, литых сталей и сплавов), чувствительных к перекосу и требующих специальных мер его предотвращения при испытании на растяжение. Этот метод применяется для оценки склонности к хрупкому разруше- ию высокопрочных сталей (метод приборного изгиба ), а также при определении вязкости разрушения и чувствительности к острым трещинам. Им широко пользуются в практике коррозионных испытаний и при приемочном контроле материалов как технологической пробой для оценки пластичности и штампуемости материала, качества сварки и т. п.  [c.37]

К технологическим свойствам металлов относится свариваемость, обрабатываемость резанием, ковкость, текучесть, прокаливаемость. Для определения пригодности металла к изготовлению конкретного изделия берут технологические пробы, часть из которых стандартизированы. К стандартизированным пробам относят пробу на загиб, на осадку в холодном состоянии, пробу проволоки— на скручивание и на навивание и т. д.  [c.15]

Технологическую пробу на изгиб (ГОСТ 14019—68) основного металла (толщиной б мм) выполняют на образцах шириной 6 = 26 и длиной = 5б-М50 мм. Образец устанавливают на двух опорах в испытательной машине и изгибают около закругленного (б й 4б) конца плоской оправки. Мерой пластичности испытываемого металла служит угол изгиба образца до появления первой трещины. Образцы пластичного металла доводят до сплющивания и фиксируют появление или отсутствие трещин на растянутой их поверхности. Для выявления анизотропии свойств металла испытывают образцы, вырезанные вдоль и поперек направления прокатки.  [c.102]

На складе сырья контролируют качество сырья и соответствие его принятым техническим условиям. В плавильном отделении проводят контроль температуры жидкого металла и готовят пробу для определения химического состава отливок, технологических и механических свойств сплава.  [c.190]

Осмотру и измерениям размеров должна подвергаться каждая труба. Химический состав принимается по ковшовой пробе. Определение механических свойств металла труб и технологические испытания осуществляются путем отбора по одному образцу от двух готовых труб.  [c.70]

Каждый вид металла обладает определенными технологическими свойствами. Например, углеродистая конструкционная сталь обрабатывается резанием легче, чем быстрорежущая или нержавеющая сталь. Чистые металлы обладают большей ковкостью и свариваемостью, чем сплавы металлов, а серый чугун, например, вовсе лишен свойства ковкости. Бронза также обладает плохой ковкостью, поэтому бронзовые детали, как и чугунные, изготовляются отливкой, а не ковкой или штамповкой. Технологические свойства металла определяют путем технологических проб. Пробы делаются на ковкость, свариваемость, прокаливаемость, кручение, гибку и т. п. Технологические свойства являются важным показателем для выбора способа обработки металла и назначения режимов обработки.  [c.15]

На заводах контроль литейного производства возложен на отдел технического контроля, подчиненный непосредственно директору завода. В плавильном отделении контролируют температуру жидкого металла и заливают пробу для определения химического состава отливок, технологических и механических свойств сплава.  [c.262]

Технологическими пробами называются испытания металлов, выполняемые несложными способами и без тщательного измерения наблюдаемых свойств.  [c.29]

Для определения пригодности материала к применению в сварных конструкциях существуют различные специальные пробы, которые позволяют произвести оценку технологической прочности применительно к выбранным сварочным материалам и технологическим условиям. Так, например, известны пробы Института электросварки им. Е. О. Патона, МВТУ им. Баумана, ЛПИ им. М. И. Калинина, Кировского завода и др. В технологических пробах в известной мере воспроизводятся условия выполнения сварных швов, соответствующие достаточно жестким условиям сварки, характерным для определенных отраслей производства. Удовлетворительное выполнение такой пробы может служить некоторой гарантией, обеспечивающей в указанных условиях достаточную технологическую прочность сварных соединений. Все эти пробы дают только качественную оценку и не относятся к числу обязательных испытаний при определении свойств материалов. Однако применение этих проб позволило уточнить некоторые важные требования, которые необходимо предъявлять к материалам для сварных конструкций. Было установлено, что приемка металла для сварных конструкций должна производиться не только по механическим характеристикам, но также и по химическому составу. При этом для обеспечения высокой технологической прочности металла сварных конструкций оказалось необходимым устанавливать для него более жесткие ограничения по химическому составу, по сравнению с металлом клепаных конструкций. В связи с этим для металла сварных конструкций ограничено содержание углерода, а также принято более строгое ограничение вредных примесей серы и фосфора.  [c.15]


Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Контроль технологических свойств (технологические пробы) производится для определения качества металла и сварных соединений, а также для установления способности стали подвергаться технологическим операциям — гибке, вальцовке и др. Основные показатели технологических свойств котельных сталей определяются пробами на холодный загиб, сплюш.ивание и раздачу.  [c.271]

Снижсинс механических свойств при воздействии кислых сред может быть вызвано НС только водородным охрупчиванием, но и изменением микрорельефа поверхности в результате интенсивного протекания локальных коррозионных процессов, приводящих к образованию концентраторов напряжений, мсжкри-сталлитной коррозии и т. п. Для разделения процессов водородного охрупчива- ния и локальных анодных процессов используют искусственное старение образцов после воздействия кислых сред на металл при температурах 150—200 °С с последующими механическими испытаниями [115, 116]. Степень влияния водорода на механические свойства сталей оценивают также по изменению характеристик технологических проб на перегиб или скручивание. Эффект наводорожи-вания зависит от времени воздействия агрессивной среды, температуры, концентрации и природы кислоты, природы и концентрации ингибитора [103, 115, 141].  [c.82]

Жидкотекучесть — это способность жидкого металла (расплава) течь и заполнять полость формы. Жидкотекучесть сплавов в общем случае определяется, во-первых, физико-химическими и теплофизическими свойствами сплавов (вязкость, поверхностное натяжение, плотность, теплоемкость, теплопроводность, теплота и интервал затвердевания во-вторых, теплофизичесБсими и гвд-родинамическими свойствами литейной формы (теплоаккумулирующая способность, смачиваемость сплавом стенок формы, характер течения металла в литниковой системе, газопроницаемость формы и т. д.) и, в-третьих, условиями заливки формы (гидростатический напор, температура и скорость заливки металла). Так как жидкотекучесть (А.) определяется на стандартных технологических пробах, то в этом случае факторы, характеризующие свойства литейной формы и условия ее заливки становятся фиксированными. Поэтому в данном случае только состав сплавов будет определять их жидкотекучесть.  [c.258]

Влияние наводороживания на охрупчивание металлов, т. е. повышение его склонности к хрупкому разрушению, известно давно. Водород, проникающий в металл при его изготовлении, термической обработке, сварке, а также при травлении, нанесении электролитических покрытий и, наконец, в процессе эксплуатации материала в некоторых активных средах, значительно ухудшает физико-механические свойства стали и, следовательно, понижает работоспособность конструкций. Склонность к хрупкому разрушению под действием водорода у мягких сталей довольно ярко проявляется в снижении их пластичности (уменьшении значений л и б), а также в уменьшении величины характеристик технологической пробы на перегиб и скручивание. Оценить склонность к хрупкому разрушению под действием водорода у высокопрочных и малопластичных материалов указанными методами довольно трудно. В таких случаях данные о трещиностойкости материала являются важным показателем степени влияния наводороживания на хрупкую прочность стали. Приведем результаты таких исследований на стали У8 в закаленном и низкоотпу-щенном состоянии. Эти исследования проводили на пластинах размером 360 X 180 мм с центральной изолированной трещиной [13, 49], подвергнутой растяжению сосредоточенной нагрузкой (см. приложение 3, рис. 117, а). После нескольких замеров параметров, характеризующих распространение трещины в данном материале в среде воздуха лабораторного помещения, образец снимали с разрывной машины и помещали в ванну для насыщения водородом. Наводороживание проводили в 20%-ном растворе серной кислоты при плотности тока 8 шдм в течение 2 ч. Немедленно после наводороживания определяли трещиностойкость наводо-  [c.158]

Испытания технологических свойств. чистовых металлов и техиологическне пробы. Испытания технологических свойств листовых металлов сводятся к испытаниям механических, физических и других его свойств и характеристик, поскольку технологические свойства, от которых зависит штам-луемость металла в операции, определяются частью этих свойств и характеристик. Технологическая проба представляет собой пробное выполнение операции на образцах металла с помощью лабораторного штампа или приспособления, моделирующих производственный Штамп. Она позволяет определить показатели штампуемости опробованного металла й. сравнить их с показателями, удовлетворяющими требования производства. Но выявить, какое именно свойство или характеристика или Же их сочетание обеспечили такой Показатель, проба обычно не может.  [c.159]

При отсутствии сертификата или, если качество электродов вызывает сомнения, данная партия, помимо испытаний технологических свойств, подвергается также проверке химического состава и механических свойств наплавленного металла (в случае аустенитных электродов химический анализ металла шва производится независимо от наличия заводского сертификата). Для этого выполняется сварка встык двух иластин. При испытании электродов, предназначенных для сварки углеродистых и низколегированных сталей, используются пластины стали Ст. 3 толщиной 12—18 мм размером 350X100 мм. При испытании электродов ЦЛ-32 применяются пластины того же размера или погоны труб диаметром 219 мм с толщиной стенки 30 мм из мартенситно- ферритной стали ЭИ756. Для аустенитных электродов подбираются пластины указанного размера или погоны труб диаметром 219 мм с толщиной стенки 18— 20 мм из стали аустенитного класса, которая должна соответствовать испытываемому присадочному материалу. Сваренные пластины подвергают термической обработке по режиму, указанному в паспорте для электродов данной марки. Из сваренных пластин изготовляют три образца на разрыв, три образца на ударную вязкость и берется проба металла шва (в виде стружки) для его химического анализа (рис. 3-2).  [c.56]

Механические свойства металла листов из стали 15ГС, поставляемых по ТУ 108.1268-84, должны удовлетворять требованиям табл. 3.18. Механические свойства контролируют на металле пробы от каждого листа на поперечных образцах после высокого отпуска. Испытание на растяжение при 20, 300 и 400 °С проводят на двух образцах при каждой температуре. Ударную вязкость при комнатной температуре и после механического старения определяют на трех образцах. Технологическая проба на загиб на 180° вокруг оправки диаметром в две толщины листа проводится при комнатной температуре на одном образце образец отбирается от головной части листа.  [c.39]


Оценка технологических свойств производится с помощью специальных технологических проб, которые разрабатываются для решения узкой технологической задачи. При этом из-за большой сложности изучаемого явления приходится пользоваться измерениями с невысокой точностью. Примером подобных проб могут служить пробы на отбел чугунов, на прокаливаемость сталей, на жидкотекучесть расплавленного металла, на осаживание и др. Ниже более подробно будет описана технологическая проба на нзлом, очень широко используемая при оценке особенностей структуры металлов.  [c.46]

Чушки, слитки и фасонные отливки — это изделия, полученные способом литья, и поэтому их можно назвать общим термином отливки . Отливки формируются из расплава, заполняющего лнтейи ю форму. Этот сложный процесс называется затвердеванием. Он включает в себя кристаллизацию жидкого металла, явления теплопередачи между отливкой и формой и в самой отливке, взаимодействие металла с материалом формы и с газовой средой, движение жидкого расплава относительно растущих кристаллов, термическое изменение размеров формы и отливки и др. Качество отливок определяется очень сложным взаимодействием всех этих процессов. Из них непосредственно к металловедению относятся процессы, связанные с проявлением так называемых литейных свойств сплавов./Литейные свойства являются технологическими характеристиками и оцениваются н измеряются с помощью специальных технологических проб. Основными литейными свойствами сплавов считаются жидкотекучесть, объемная и линейная усадка, проявление ликвации, трещнноустой-чивость, а также вид и размеры кристаллов в твердом металле (макроструктура), На проявление всех литейных свойств и вообще на процесс затвердевания отливки очень большое влияние оказывает характер кристаллизации сплава. Внешние условия — материал формы, определяющий скорость отвода тепла от отливки, способ ее заполнения, начальная температура расплава, возможность питания усадки — также существенно сказываются иа количественных и качественных показателях литейных свойств и на ходе затвердевания Отливок,  [c.121]

Как было показано в 15, пластическая деформация обусловливает рост зерна в твердом металле. По склонности к росту аустенитного зерна различают наследственно мелкозернистые и наследственно крупнозернистые стали. Главная причина различия в скорости роста ау-стенитных зерен состоит в загрязненности стали мельчайшими частицами нерастворимых окислов, которые вытесняются на границы растущих зерен и образуют труднопроницаемые для диффундирующих атомов оболочки. Обычно стали, раскисленные алюминием или легированные ванадие.м, титаном, молибденом, вольфрамом, являются наследственно мелкозернистыми. Поскольку от размера зерна аустенита зависят многие технологические и эксплуатационные свойства, особенно ударная вязкость, определение величины зерна стали является важной технологической пробой. Величину зерна определяют по специальной шкале, состоящей из 10 эталонов структуры, выявленной при увеличении 100. Число зерен на 1 мм п связано с номером эталона N зависимостью /2=2 + . Таким образом, когда обсуждают величину зерна в стали, то имеют в виду зерна аустенита. Для выявления зерен аустенита пользуются специальными приемами изучают поверхность излома, исследуют шлифы после вакуумного травления, намеренно  [c.162]

Важнейшим свойством стали является прокаливаемость, которая определяется как глубина закаленного слоя в данных условиях охлаждения. Прокаливаемость оценивается с помощью технологической пробы на торцовую закалку. Образец стали диаметром 25 мм и длиной 100 мм нагревают до нужной температуры, устанавливают Б вертикальном положении и на его нижний торец подают охлаждающую среду. Замеряя твердость и изучая микроструктуру по длине образца от нижнего торца, определяют толщину закаленного слоя. Закаленным считают металл, в структуре которого не менее 50% мартенсита, остальное — троостит. Твердость закаленного слоя не менее HR bO. Для углеродистых сталей, содержащих 0,6—1,2% С, при охлаждении водой глубина прокаливания составляет 5—6 мм.  [c.168]

Стойкость сварных соедипений протпв образования трещпн характеризует способность составляющих его материалов образовывать соединение без трещин и является комплексной характеристикой, зависящей как от технологических свойств металлов, так и от интенсивности и величины сварочных деформаций или напряжений. Ее определяют путем сварки образцов технологических проб отраслевого назначения, включающих основной и сварочный материалы, тип и жесткость сварного соедпнения, термические и климатические условия сварки, применительно к определенному виду сварных конструкций. Степень (или группа) стойкости оценивается указанным выше комплексо.м условий сварки образца пробы, при которых еще не образуется трещин.  [c.190]


Смотреть страницы где упоминается термин Технологические свойства и технологические пробы металлов : [c.291]    [c.75]    [c.9]   
Смотреть главы в:

Технология металлов  -> Технологические свойства и технологические пробы металлов

Технология металлов Издание 2  -> Технологические свойства и технологические пробы металлов



ПОИСК



Металлов Свойства

Металлы Технологические пробы

Металлы Технологические свойства

Проба технологическая

Пробои

Пробой

Свойства технологические



© 2025 Mash-xxl.info Реклама на сайте