Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Крутильные колебания валов с сосредоточенными массами

Крутильные колебания валов с сосредоточенными массами. При  [c.360]

Определение частот крутильных колебаний валов с сосредоточенными массами  [c.262]

Расчеты собственных колебаний упругих систем иллюстрируются примерами. Выведенные на основании точных методов трансцендентные уравнения частот изгибных и крутильных колебаний стержней сопровождаются графиками корней этих уравнений. Много примеров расчета частот собственных колебаний систем с переменной жесткостью выполнено по методу последовательных приближений. Специальный раздел посвящен расчетам собственных крутильных колебаний валов с сосредоточенными массами, а также разветвленных валов, соединенных зубчатыми передачами.  [c.3]


Основная частота собственных колебаний вала с сосредоточенной массой при учете собственной массы вала наиболее просто определяется, если к сосредоточенной массе прибавить приведенную массу вала. Коэффициент приведения при поперечных колебаниях для консольной оси постоянного сечения с массой на конце 33/140 для двухопорного вала или оси с массой посредине 17/35 при крутильных колебаниях для защемленного одним концом вала с диском на другом 1/3.  [c.438]

Как для крутильных и продольных колебаний, так и для колебаний поперечных ступенчатого вала с сосредоточенными массами (дисками) можно построить матричную схему расчета, использовав кроме матриц перехода К1 приведенные в гл. V матрицы жесткости и сосредоточенной массы с гироскопическим моментом (5.24). Так, для вала, шарнирно опертого по концам и несущего два диска (рис. 77), массы и экваториальные моменты инерции которых соответственно равны т , тп2,А ,А2, матричная схема расчета выглядит следующим образом  [c.303]

Типичными колебательными системами такого рода, часто встречающимися в машиностроении, являются вал с несколькими дисками (рис. 532), совершающий крутильные колебания, балка с несколькими сосредоточенными массами (рис. 533), совершающая поперечные колебания, и т. п. В первом случае движение описывается  [c.552]

Типичными колебательными системами такого рода, часто встречающимися в машиностроении, являются вал с несколькими дисками (рис. 554), совершающий крутильные колебания, балка с несколькими сосредоточенными массами (рис. 555), совершающая поперечные колебания, и т. п. В первом случае движение описывается углом поворота вокруг продольной оси вала, а во втором — вертикальным перемещением сосредоточенных масс в направлении, перпендикулярном к оси балки. Примером колебательной системы, в которой движение массы определяется одновременно линейным смещением и углом поворота, может служить кузов автомобиля, схема которого приведена на рис. 556.  [c.614]

Из всех возможных методов определения собственных частот многомассовых систем рассмотрим только два метод непосредственного анализа систем дифференциальных уравнений движения и метод матриц переноса. Оба метода поясним на примере трехмассовой динамической модели, состоящей из трех сосредоточенных масс с моментами инерции /2, /з, соединенных упругими элементами, имеющими коэффициенты жесткости l и q (рис. 72). Эта модель может быть использована для анализа крутильных колебаний валов зубчатых механизмов, образующих цепную систему. В последнем случае при определении углов закручивания отдельных элементов надо учитывать передаточные отношения так, как было указано при вычислении  [c.243]


КРУТИЛЬНЫЕ КОЛЕБАНИЯ ВЕРТИКАЛЬНОГО ВАЛА С СОСРЕДОТОЧЕННОЙ ПО СЕРЕДИНЕ ЕГО ДЛИНЫ МАССОЙ  [c.26]

Уравнения малых колебаний струны, продольных колебаний стержня и крутильных колебаний вала относятся к одному классу уравнений в частных производных - к уравнениям гиперболического типа. В монографиях и учебниках, посвященных уравнениям математической физики, приводятся уравнения, не учитывающие сосредоточенные массы и сосредоточенные силы. В основном рассматриваются волновые уравнения или уравнения, когда действующие на струну, стержень или вал силы распределены по всей длине. В примерах на рис. 7.1—7.7 показано, что реальные задачи могут быть существенно сложнее не только классических задач, которые приводятся в математической литературе, но и тех, которые обычно рассматриваются в монографиях, посвященных теории колебаний. Эти уравнения, которые приводятся без вывода для наиболее общих случаев, имеют следующий вид (с учетом сил вязкого трения).  [c.311]

Уравнение крутильных колебаний вала переменного сечения с сосредоточенной массой , распределенным и сосредоточенным моментом М (см. рис. 7.7, б)  [c.314]

Крутильные системы коленчатых валов автомобильных и тракторных двигателей представляют собой сложные системы, состоящие из коленчатого вала и связанных с ним движущихся масс. Для облегчения расчетов действительная сложная систе.ма коленчатого вала заменяется эквивалентной ей в отношении крутильных колебаний упрощенной теоретической системой. Теоретическая, или эквивалентная, система состоит из упругого прямолинейного постоянного диаметра вала, не обладающего массой, и ряда насаженных на этот вал дисков (сосредоточенных масс).  [c.73]

Из возможных крутильных колебаний основное значение обычно имеют колебания привода в целом. При определении частот собственных колебаний рассчитываемую систему или вал приводят к валу постоянного диаметра с сосредоточенными массами. При определении податливости необходимо учитывать контактные деформации в шпоночных и шлицевых соединениях, а также влияние прогибов валов, несущих передачи, на угол закручивания системы. Мелкие массы заменяют одной равнодействующей, приложенной в их центре тяжести. Систему по возможности сводят к двух- или трехмассовой, позволяющей использовать для определения частот колебаний формулы, приведенные в табл. 74.  [c.439]

Способ Релея. При рассмотрении колебаний упругих систем с одной и с несколькими степенями свободы мы, как правило, пренебрегали массой упругого элемента по сравнению с колеблющейся сосредоточенной массой. Это имело место и в случае вертикальных колебаний груза, подвешенного на пружине (см. рис. 537), и в случае крутильных колебаний диска на валу (рис. 545), и в случае поперечных колебаний грузов, расположенных на балке (рис. 555), и в других случаях. Хотя эти упрош,ения во многих практических случаях не вносят особых погрешностей в получаемые решения, тем не менее для некоторых технических задач желательно более детально рассмотреть точность этих приближений. Чтобы оценить влияние принятых упрощений на получаемое значение частоты колебаний упругой системы, воспользуемся приближенным методом Релея.  [c.641]

Крутильная система машинного агрегата обычно образуется некоторым числом сосредоточенных масс, упругим валопроводом, рядом передач (ременных, зубчатых, червячных и пр.), упругих и жестких муфт и других соединений (шпоночных, шлицевых и др.). При неточном центрировании муфт или под воздействием усилий со стороны передач возникают поперечные, а иногда и осевые деформации валов, что может явиться причиной появления наряду с крутильными, также изгибных и продольных колебаний.  [c.58]

Валы поршневых двигателей и некоторых турбомашин, к которым присоединены сосредоточенные массы в виде дисков, гребных винтов, кривошипно-шатунных и других механизмов, подвергаются периодическим крутящим воздействиям и совершают вынужденные крутильные колебания. В связи с этим возникает необходимость расчета частот собственных колебаний и амплитуд вынужденных колебаний как в нерезонансной области, так и непосредственно при резонансе. При определении частот собственных колебаний и амплитуд вынужденных колебаний а нерезонансной области силы сопротивления трения не имеют существенного значения и не учитываются. При определении амплитуд колебаний при резонансе силы сопротивления, наоборот, весьма существенны н должны учитываться, так как при их отсутствии амплитуды колебаний неограниченно возрастали бы во времени.  [c.359]


Теория крутильных колебаний достаточно проста и по применяемым методам вычислений она мало отличается от теории продольных колебаний. Для практического применения большее значение имеют случаи колебания валов с сосредоточенными массами, чел с непрерывным распределениехМ масс. Именно поэтому основное внимание будет уделено системам с сосредоточенными массами. При решении задач с распределенными массами можно будет применять, как это будет показано ниже, те же рассуждения и выводы, которые применялись в главе о продольных колебаниях стержня. , I  [c.257]

При определении частот собственных крутильных колебаний рассчитываемую систему или вал приводят к валу постоянного диаметра с сосредоточенными массами. При возможности сведения системы к одно-, двух- или трехмассной для определения собственных частот колебаний можно использовать формулы табл. 1.37 (0 - момент инерции массы, кг м ).  [c.129]

Во многих случаях непосредственное использование общщ формул (6.45) для гармонических коэффициентов представляет более простой путь составления уравнений крутильных (продольных) колебаний стержней, несущих сосредоточенные массы. Ддя приведенного на рис. 64 вала, несущего в точках О, х, I сосредоточенные маховые массы с моментами инерции 1 , /3, /д, отнеся инерционные моменты крайних масс to2(p(0) и к гранич-  [c.270]

При большом количестве подшипников и при коротких участках вала критические угловые скорости имеют весьма высокие значения. При эксплуатационных числах оборотов, встречающихся на практике, они обычно не проявляются. Такое положение наблюдается, в частности, у коленчатых валов. Так, при трех и даже двух опорах коленчатого вала четырехцилиндрового двигате-, 1Я не возникают крутильные колебания в пределах эксплуатационных режимов. Однако может наступить явление резонанса от какой-либо из гармонических составляющих возбуждающих усилий, вызывающих поперечные колебания вала. При больнюм количестве сосредоточенных масс на валу в статически-неопре-делимых случаях расчет крутильных колебаний является задачей сложной и трудоемкой в вычислениях. Только несколько частных случаев являются исключением. Поэтому был разработан целый ряд методов, которые допускают приближенно и с меньшей затратой труда установить низшую критическую угловую скорость, практически представляющую основной интерес.  [c.58]

Динамическое состояние зубчатой передачи характеризуется в общем случае поведением ее как колебательной системы со многими степенями свободы. Зубчатое колесо, сидящее на валу, имеет три степени свободы и, следовательно, возможны следующие колебания крутильные колебания колеса вокруг оси изгибные колебания (смещение) зубчатого колеса в плоскости зацепления, вызывающие деформации валов смещение зубчатого колеса в направлении, перпендикулярном к плоскости зацепления. В расчетах учитывают в основном крутильные колебания. С учетом степеней свободы связано число учитываемых при расчете колебательной системы сосредоточенных масс. Так как зубчатая передача обладает двумя или больпшм числом степеней свободы, то упрощенный расчет, использующий одномассовую заменяющую систему, только в некоторых случаях, может дать приемлемое решение.  [c.293]

Обрабатываемая деталь для сравнительных расчетов отдельных конструктивных вариантов берется жесткой. При обработке в центрах она рассматривается как жесткое тело на упругих опорах. На основании анализа форм колебаний, полученных при обработке в центрах, можно пренебречь смещениями детали, упорных центров и бабок по оси х. Из перемещений задней бабки можно выбрать три вида наиболее значительных перемещений смещение по оси у и поворот около осей х и г. Формы колебаний шпинделей с значительными сосредоточенными массами качественно близки к статическим формам изгиба под действием сил резания. Колебания передней (шпиндельной) бабки довольно сложны, но наибольший интерес представляют ее поворотные колебания около оси 2, хотя они по амплитуде значительно меньше амплитуды заготовки, особенно при обработке в центрах. Существуют условия, особенно при нежестких шпинделях или шпиндельных бабках, когда на устойчивость и колебания при резании влияет крутильная система главного привода. Она рассматривается как ряд последовательно расположенных дисков на вало-проводе.  [c.178]

При расчете крутильных колебаний коленчатого вала после ний приводится к круглому валу постоянного сечения. Движ щиеся вместе с ним массы (маховика, генератора, пропеллерг кривошипных механизмов) приводятся к сосредоточенным н определенных местах дискам с постоянными моментами ине1 ции. Если не учитывать массы отрезков вала между дисками, т угловые отклонения дисков полностью определят деформаци системы при крутильных колебаниях. Мы снова приходим к ут рощенной приведенной системе с конечным числом степеней чс боды.  [c.102]


Смотреть страницы где упоминается термин Крутильные колебания валов с сосредоточенными массами : [c.230]    [c.120]   
Смотреть главы в:

Колебания упругих систем в авиационных конструкциях и их демпфирование  -> Крутильные колебания валов с сосредоточенными массами



ПОИСК



Валы Колебания крутильные

Валы круглого поперечного сечения сосредоточенными массами — Колебания крутильные — Определение частот

Валы ременных с сосредоточенными массами Колебания крутильные

Колебания валов

Колебания валов с сосредоточенными массами

Колебания крутильные

Крутильные валов

Крутильные колебания валов

Крутильные колебания вертикального вала с сосредоточенной по середине его длины массой

Крутильные колебания — см Колебания

Крутильные колебания — см Колебания крутильные



© 2025 Mash-xxl.info Реклама на сайте