Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМИЧЕСКАЯ Химический состав —

В связи с этим необходимо учитывать условия, в которых осуществляется технологический процесс сварки химический состав, размеры и толщину свариваемого металла температуру окру каю-щего воздуха режим сварки, определяющий долевое участие основного металла в формировании шва скорость охлаждения металла шва и зоны термического влияния (з. т. в.) химический состав присадочных материалов их долевое участие в формировании шва, характер протекающих в капле, дуге и сварочной ванне реакций величину пластических деформаций растяжения, возникающих в металле шва, и з. т. в. при его охлаждении.  [c.171]


При выборе металла для сварочных заготовок необходимо учитывать не только его эксплуатационные свойства, но и его свариваемость или возможность ирименения технологических мероприятий, обеспечивающих хорошую свариваемость. В процессе сварки металл подвергается термическим, химическим и механическим воздействиям. В связи с этим в различных зонах основного металла, расположенного вблизи шва, изменяются его состав, структура и свойства. Следовательно, механические и эксплуатационные свойства металла в зоне сварного соединения могут быть неравноценны таким же свойствам основного металла.  [c.246]

Таблица 8. Химический состав, термическая обработка и механические свойства некоторых легированных улучшаемых сталей Таблица 8. <a href="/info/9450">Химический состав</a>, <a href="/info/6831">термическая обработка</a> и механические свойства некоторых легированных улучшаемых сталей
Марка стали Химический состав, % Термическая обработка (температура, С и охлаждающая среда) Мн/м- В Мн/м 6. % Р. %  [c.186]

Химический состав магнитных сталей приведен в табл. 15.12, основные свойства после термической обработки — в табл. 15.13.  [c.277]

В заключение отметим, что механические характеристики материалов зависят от многих факторов, в числе которых можно назвать, например, химический состав и технологию получения материалов, виды термической обработки и обработки резанием, условия эксплуатации и др.  [c.138]

Механические характеристики материалов зависят от многих факторов. На свойства металлов и сплавов существенное влияние оказывают химический состав, технология их получения, термическая и механическая обработки, условия эксплуатации — температура, среда, характер нагрузки и др.  [c.111]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


Режимы термической обработки литейных сплавов дополнительно к марке сплава обозначаются следующим образом Т1—искусственное старение без предварительной закалки Т2 — высокотемпературное старение. Отливки, не подвергаемые термической обработке, дополнительного шифра при марке сплава не имеют. Химический состав сплавов — по ГОСТ 2685—75.  [c.52]

Литейные сплавы в зависимости от режима термической -обработки отливок имеют дополнительные шифры при марке сплава Т1—искусственное старение Т2— отжиг Т4 — закалка Тб — закалка и старение. Химический состав сплавов по ГОСТ 2856—79.  [c.56]

Группа Б - Поставляется с гарантируемым химическим составом Перед маркой стали ставится буква <Б> Применяется для изготовления деталей, подвергаемых термической обработке (валы, оси, шестерни и др,), С увеличением порядкового номера стали содержание углерода в ней повышается, Химический состав сталей группы Б приведен в табл.7.  [c.83]

Для изготовления режущего инструмента выбрана сталь У10. Укажите химический состав и группу стали по назначению. Назначьте режим термической обработки, приведите его обоснование. Опишите структуру и механические свойства стали после термической обработки.  [c.159]

Стандарты охватывают а) материалы, их химический состав, сортамент, механические свойства и термическую обработку  [c.165]

Химический состав, термическая обработка и механические свойства основных марок хромистой нержавеющей стали показаны в табл. 19.  [c.32]

Марка стали Химический состав, % Термическая обработка Механические свойства  [c.33]

Химический состав деформируемых неупрочняемых термической обработкой алюминиевых сплавов  [c.34]

Химический состав упрочняемых термической обработкой деформируемых алюминиевых сплавов  [c.34]

Химико-термическая обработка — это технологический процесс, при котором химический состав, структура и свойства поверхности металла изменяются с помощью диффузионного насыщения поверхности различными элементами при повышенных температурах. Как следствие изменения структурно-энергетического состояния поверхности металла, изменяются и его объемные свойства (исследования) (Г. Н. Дубинина).  [c.125]

Качество поверхностного слоя определяется свойствами материала и технологией изготовления заготовки. Например, после горячей штамповки на поверхности заготовки будет окалина. Шероховатость поверхности заготовки, полученной холодной штамповкой, значительно ниже, чем заготовки, полученной горячей штамповкой, но ее поверхностный слой имеет наклеп. Если заготовка подверглась химико-термической обработке, ее поверхностный слой имеет иной химический состав и структуру, чем основа.  [c.17]

У группы А гарантируются только механические свойства. Химический состав не гарантируется. Поэтому из нее можно делать изделия только применяемые механическую обработку (снятие стружки). Нагревы, сварку применять нельзя, так как изменяющиеся при этом свойства можно восстановить только термической обработкой, но для этого необходимо знать содержание углерода в стали, т. е. ее химсостав.  [c.30]

Термическая обработка ванадия. Химический состав ванадия, выплавленного в индукционной и дуговой печах, дан в табл. 59.  [c.494]

Начальные, исчезающие и остаточные напряжения обычно приводят к уменьшению прочности деталей. Однако умелое их использование, наоборот, дает возможность повысить прочность деталей следующими путями 1) предварительным напряжением в системе соединения тел (предварительно напряженный железобетон) 2) поверхностным наклепом (дробеструйной обработкой), при котором на поверхности детали создаются значительные напряжения сжатия, что приводит к повышению выносливости деталей 3) химико-термической обработкой (цементация, азотирование и др.), которая изменяет в верхних слоях поверхности химический состав и свойства материала 4) закалкой, при нагреве токами высокой частоты, с помощью которой в верхних слоях деталей создаются большие напряжения сжатия (для стали 700—900 Н/мм ). Все эти виды термического упрочнения дают возможность не только повысить усталостную прочность деталей, но и их износостойкость в два-три раза.  [c.245]


Химический состав сталей, использованных в работе, соответствует ГОСТу 5632-61. Перед изготовлением образцов литые заготовки подвергались термической обработке по принятым для этих сталей рен имам.  [c.263]

Термические эффекты такого рода накипи характеры для различных алюмосиликатных соединений. Большой эндотермический эффект при 430 °С соответствует температуре дегидратации минерала натролита. Экзотермический эффект при 955 °С характерен для различных алюмосиликатных соединений типа каолина. Химический состав накипи очень близок к химическому составу натролита. Следует отметить, что образование этого необычного вида накипи совпало с попаданием в котел минеральной взвеси (во время паводка) при солесодержании котловой воды в солевом отсеке 7000-15000 мг/л и содержании кремниевой кислоты 700-800 мг/л. После снижения солесодержания с 2500-3000 до 150-200 мг/л и применения коагуляции взвеси сульфатом железа образование подобной накипи прекратилось.  [c.220]

После обзора и оценки данных по влиянию излучения на конструкционные материалы становится ясно, что в результате облучения происходят многие резко выраженные изменения их свойств. Эти изменения свойств имеют отношение к конструкционным характеристикам металлов. Переменными, влияющими на степень изменения свойств конструкционных металлов и сплавов, являются кристаллическая структура, величина зерна, химический состав, температура плавления, а также технология изготовления и термическая обработка. Помимо этого, на свойства конструкционных материалов влияют условия облучения в реакторе плотность потока нейтронов, величина интегрального потока, температура облучения, напряженное состояние и окружающая образец среда.  [c.274]

Химический состав сплава и термическая обработка влияют на его электрическую проводимость (табл. 4-9— 4-11)  [c.64]

На сопротивление высокопрочных сталей КР оказывают существенное влияние термическая обработка, в особенности температура отпуска, способ выплавки, пластическая деформация, химический состав. Влияние легирующих элементов на склонность к КР для высокопрочных сталей в основном близко по характеру к рассмотренному выше для аустенитных сталей, хотя и имеет ряд особенностей, отмеченных в работе [11.  [c.73]

В 1932 году, когда о стеклокерамике ничего не было известно, профессор И. И. Китайгородский писал ...изменяя химический состав, температуру и время термической обработки, можно регулировать ход процесса кристаллизации и влиять на образование той или другой кристаллической структуры. Последняя же, в свою очередь, обусловит необходимые физико-химические свойства полученного вещества и изделий из него .  [c.103]

Химический состав, режимы термической обработки и механические свойства исследуемых сплавов и сталей по техническим условиям приведены в табл. 3.1 и 3.2.  [c.66]

В справочнике приведены химический состав, механические и физические свойства, режимы термической обработки и названия большинства углеродистых, легированных и высоколегированных сталей, применяемых в настоящее время в мировой практике. Содержатся основные данные о конструкционных, инструментальных, нержавеющих, кислотоупорных, теплостойких и жаропрочных талях двенадцати стран Европы, Америки и Азии (ФРГ, США, Бельгия, Англия,  [c.268]

Сплавы системы А1 — Сц — Mg были первыми термически обрабатываемыми высокопрочными алюминиевыми сплавами и до настоящего времени относятся к наиболее широко используемым. Химический состав большинства применяемых промышленных сплавов серии 2000 приведен в табл. 3, вязкость разрушения, механические и коррозионные свойства — в табл. 4, 5. Сплавы систем А1 — Си и А1 — Си — Мд приобретают высокую прочность в результате дисперсионного твердения. Это достигается закалкой с высокой скоростью либо естественным старением при комнатной температуре (состояние Т4), либо искусственным старением при средних температурах (состояние Тб). Холодная обработка после закалки еще более увеличивает прочность и обозначается как состояние ТЗ, а после искусственного старения как состояние Т8.  [c.234]

Прелел Деформация под нагрузкой 2 кг/сл Термическая Химический состав в %  [c.327]

Эти стали предназначены для использования главным образом в состоянии поставки без последующей обработки давлением, сварки или термической обработки, поскольку их химический состав, оире деляюн1ий режимы обработки, может сильно колебаться.  [c.251]

Стали гру[1п Б и В применяют в тех случаях, когда при иронз-водстве изделий используется сварка, горячая деформация или изделие необходимо упрочнять термической обработкой. Для определения режима обработки необходимо знать химический состав стали.  [c.252]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]


Деформируемые сплавы, упрочняемые термообработкой Найболее распространенными представителями группы алюминиевых сплавов, применяемыми в деформированном виде и упрочняемыми термической обработкой, являются дуралюмины (от французского dur- твердый). К ним от носятся сплавы системы А1 - Си - Mg-Mn. Типичными дуралюминами являются марки Д1 и Д16, Их химический состав приведен в табл. 1S..  [c.119]

Для изготовления мембран и других упругих элементов выбрана бронза БрБНТ1.7. Приведите химический состав, режим термической обработки и получаемые механические свойства материала. Опишите процессы, происходящие при термической обработке.  [c.147]

Для изготовления деталей применяют латунь ЛАНКМц 75-2-2.5-0.5-0.5. Приведите химический состав, структуру и назначьте режим термической обработки.  [c.156]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Сварку листов осуществляли встык с применением электродуговой ручной сварки и автоматической сварки под флюсом. Ручную электродуговую сварку выполняли качественными электродами с различным составом покрытия с фтористокальциевым покрытием (марки УОНИ 13/45 и АНО-7) и рутиловым покрытнем (марки МР-3 и АНО-4). Химический состав металла сварных швов й основного металла приведен в табл. 8. Автоматическую сварку производили на сварочном тракторе ТС-17Р под слоем плавленого флюса АН-348А. Исследование влияния термической обработки на коррозионное поведение сварных соединений вели на образцах после двух видов отжига низкотемпературного (/ = 680 °С) и полного (i = 920 Q,  [c.237]

Изменение магнитных свойств стали 1X13 в зависимости от температуры отпуска после закалки с разных температур исследовано авторами данной статьи, и результаты представлены на рис. 2, а (химический состав приведен в табл. 4). Наибольшее изменение структурно-чувствительные характеристики претерпевают в интервале температур отпуска 500— 600 °С. В области же температур, в которых эта сталь обрабатывается по 1 ОСТ, на кривых изменения магнитных свойств наблюдается почти прямолинейный участок, магнитные свойства изменяются очень слабо, в то время как механические продолжают монотонно убывать. Такое изменение магнитных свойств связано с процессами карбидообразования, как и для некоторых конструкционных сталей, для которых наблюдается аномальное изменение коэрцитивной силы в области высокотемпературного отпуска [18]. В интервале температур отпуска 600—770 °С контроль качества термической обработки этой стали по магнитным параметрам затруднителен.  [c.99]

Свойства стали ШХ-15 в зависимости от режима термической обработки изучались на образцах двух видов плоских (40X10X3 мм) — для измерения всех характеристик, кроме магнитных, и цилиндрических (/=150 мм, й =3 мм)—для магнитных измерений в переменном поле. Образцы были изготовлены из двух прутков стали ШХ-15 в состоянии поставки и имели следующий химический состав углерод—1,05%, марганец — 0,26 — 0,29, кремний — 0,28 — 0,30, хром — 1,49—  [c.175]

Влияние свойств материала на изменение области существования иераспространяющихся усталостных трещин, возникающих в результате ППД, исследовано на многих широко применяемых в машиностроении сталях, имеющих существенно различные прочностные характеристики. В табл. 31 и 32 приведены химический состав, режим термических обработок и механические характеристики всех исследованных материалов.  [c.145]

Проверенные заготовки шлифуют и полируют, доводят их размеры до заданных. Затем заготовки снова поступают в печь, где их подвергают термообработке по заданному режиму. В состав стекольной шихты вводят одно или несколько веществ (нук-леаторов), способных образовывать зародыши кристаллов. Их кристаллическая решетка подобна решетке выделяющихся при термообработке из стекла кристаллических фаз. Для успешного осуществления процесса необходимо правильно выбрать химический состав исходного стекла и нуклеаторы кристаллизации, а также режимы термической обработки изделий.  [c.106]


Смотреть страницы где упоминается термин ТЕРМИЧЕСКАЯ Химический состав — : [c.8]    [c.247]    [c.77]    [c.5]    [c.165]    [c.48]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



10 — Химический состав коррозиониостойкие — Механические свойства 11 —Области применения 11 —Термическая обработка 10 — Химический состав

105, 107 — Химический состав термически обработанный Сульфидирование — Влияние

12%-ные сложнолегированные жаропрочные 131—138 —Азотируемый слой — Глубина и твердость Марки и назначение 135—137 — Механические свойства — Зависимость литейные 202—206 — Марки и назначение 202, 204 , 206 •—Механические свойства 203—205 — Пределы прочности длительной и усталости 204, 205 — Термическая обработка 203, 204 — Химический состав

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав магнитные свойства 35, 36 — Структура — Влияние хрома, никеля

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав марганца

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав оценка 65 , 66 — Механические

376 — Химический состав низкоуглеродистые цементуемые — Механические свойства и режимы термической обработки 374 Химический состав и свойства

46 — Химический состав литейные — Механические свойства и термическая обработка 50 Химический состав

510 — Обработка термическая 513 — Характеристики свойств со специальными физическими и химическими свойствами 455 — Марки, состав, назначение 456 — Характеристики свойств

69 - Химический состав 70 - Режимы термической обработки 71 - Механические свойства 71-74 - Способы улучшения

76, 79, 80 — Термическая обработка — Режимы 80 — Химический состав

84 — Термическая обработка — Режимы86 —Химический состав

87, 88 — Химический состав системы А1 — Си — Si — Применение 89, 90 — Свойства 88—90 Термическая обработка — Режим

97 — Применение 90—92 —Свойства 91, 92 —Термическая обработка — Режимы 91, 92 — Химический состав

Влияние на обрабатываемость резанием жаропрочных сталей и сплавов их химического состава, физико-механических свойств и термической обработки

Влияние химического состава и режимов термической обработки на механические свойства Беляков)

Влияние химического состава и структуры на коэффициент термического расширения и рост чугуна

Жаропрочные сплавы Термическая обработка и химический состав

Инструментальные стали для измерительного инструмента — Термическая обработка 365 Химический состав

Коррозионностойкие сплавы высоколегированные Коррозионная литейные — Механические свойства и термическая обработка 50 Химический состав

Нержавеющие сплавы Коррозионная стойкость литейные — Механические свойства и термическая обработка 50 Химический состав

Нержавеющие стали высокопрочные литейные 201—208 — Механические свойства 50 — Термическая обработка 50, 203, 204, 211, 212 Химический состав

Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Пружины витые Состав химический и термическая

Сплавы Химический состав и термическая обработка

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы сложнолегироваиные Длительная титановые — Механические свойства 11 —Области применения 11 Термическая обработка 10 — Химический состав

Стали аустенитные — Кривая деформирования 32 — Испытания на ползучесть свойства 11, 13 —Области применения 11, 13 — Термическая обработка 10, 12 — Химический состав

Стали для клапанов и жаропрочные стали Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Сталь рессорная горячекатанная для с малым термическим расширением— Химический состав

Химический состав и механические свойства стали углеродистой обыкновенного и повышенного качества и термическая обработка некоторых изделий

Электротехнические стали 238 — Магнитные свойства 260—262 — Обозначения условные 247 — Покрытия отклонения 249 — Термическая обработка 273 — Химический состав



© 2025 Mash-xxl.info Реклама на сайте