Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Случайные процессы. Уравнение Фоккера — Планка

Метод уравнения Фоккера-Планка и соответствующий нелинейный метод Ланжевена легко могут быть обобщены на многокомпонентные жидкости. Как было показано в параграфе 8.3, единственным новым обстоятельством является то, что в многокомпонентной жидкости существует несколько векторных диссипативных процессов, связанных с переносом энергии и вещества теплопроводность, диффузия и перекрестные эффекты. Поэтому случайные составляющие потока тепла и диффузионных потоков будут линейными комбинациями нескольких гауссовских переменных. Пример построения нелинейного метода Ланжевена для многокомпонентной жидкости можно найти в работе [132].  [c.241]


Отметим, что при нестационарном случайном возмущении функция распределения не может быть стационарной, а при стационарном возмущении функция распределения может быть и стационарной и нестационарной. Так, например, если мы рассматриваем движение системы при стационарном внешнем возмущении в стационарном установившемся режиме, не интересуясь переходным процессом, то функция распределения будет стационарной, а если рассматривается движение системы, начиная с какого-то момента времени, в котором она характеризуется определенными начальными условиями, то функция распределения будет нестационарной, но с течением времени, по мере затухания переходного процесса в системе, она будет стремиться к стационарной. Изучить переходный режим движения системы с помощью уравнения Фоккера—Планка—Колмогорова затруднительно. В дальнейшем будет показано, что в этом случае уравнение Фоккера—Планка—Колмогорова будет уравнением в частных производных с переменными коэффициентами, для которых общих методов решения пока не существует. В дальнейшем будем предполагать, что внешнее возмущение стационарно и имеет нормальный закон распределения.  [c.172]

Фазовое пространство 288 Флуктуации термодинамические 26 Фоккера—Планка уравнение 94, 96 Фонтанирования эффект 217, 244 Функция распределения в теории случайных процессов 141  [c.447]

При выводе уравнения Фоккера—Планка из уравнения Лан-жевена в гл. IV мы отбросили инерциальный член. Теперь нетрудно понять, почему это было сделано. Дело в том, что с инерцией связана память частицы о движении x t) в прошлом. Поэтому при учете инерции случайный процесс л (/) не является марковским (см. также сноску на с. 236).  [c.72]

Рассмотрим винеровский случайный процесс (см. 18), описывающий, пока для простоты, одномерное брауновское движение свободной частицы (многомерное обобщение этого подхода очевидно). Мы уже знаем, что условия и безусловная плотности вероятности удовлетворяют уравнениям Смолуховского (5.27) и Фоккера—Планка (5.39) (в данном случае — уравнению диффузии (5.47)), и нашли их решение (5.48). Обсудим, каким образом можно определить вероятность тех или иных траекторий х 1) бра-уновской частицы, начинающихся при =0 в точке хо. Для этого прежде всего разделим временной интервал (0, ) на п частей (например, равных At=t n) t =jAt и введем для каждого момента пространственные интервалы (aj, 6 ,). Теперь разобьем множество возможных траекторий частицы в зависимости от того, проходят ли они через эти ворота (или окна ) а <Х]<Ь , где, как и раньше, Xj = x(tj) (рис. 9). Вероятность реализации такого множества траекторий можно найти, интегрируя условную плотность вероятности  [c.90]


По поводу этого уравнения авторы работы делают следующее заключение Полученное нами уравнение является одномерным обобщенным уравнением Фоккера—Планка в случае переменных структурных чисел Оно справедливо, если время корреляции т ор много меньше постоянных времени системы и если не учитывать интервалы времени порядка времени корреляции, другими словами, если можно считать случайную функцию х (i) марковским случайным процессом. Вывод уравнения, приведенный здесь, интересен тем, что в нем не используется понятие процесса Маркова. Общепринятый аппарат процессов Маркова заменен аппаратом обобщенных корреляционных функций, позволяющим проводить исследования в общем случае, переходящем при определенных условиях в случай процессов Маркова. Оценка членов уравнения (3.51) для s > 3 произведена Р. Л. Стратоно-вичем в работе [81 ], где показано, что если время корреляции процесса внешних возмущений мало по сравнению с временем переходного процесса в системе, то можно использовать обычное уравнение ФПК, параметры которого зависят от интегральных характеристик корреляционных функций внешних возмущений, так как при t > т ор важными являются не корреляционные функции, а их интегральные характеристики.  [c.164]

Ответ заключается в следующем так как уравнения механики обратимы, то необратимость возникает тогда, когда уравнения механики мы дополняем чуждыми самой механике вероятностными гипотезами. В случае уравнений Фоккера - Планка такой гипотезой является предположение о марковском характере процесса (уравнение Смолухов-ского). В выводе уравнения Больцмана из цепочки уравнений Боголюбова роль такой гипотезы выполняет условие ослабления корреляций (87.17), приводящее к появлению асимметрии по отношению к отражению времени и т. д. Введение подобных гипотез теснейшим образом связано с ролью взаимодействия между частицами (в частности, с ролью столкновений). Оно является фактором, вызывающим направленную эволюцию состояния, которое описывается функцией распределения. Не случайно поэтому, что в кинетических уравнениях, при выводе которых взаимодействием частиц, в частности столкновениями, мы пренебрегаем, необратимость не возникает. Примерами подобных уравнений являются уравнение самосогласованного поля ( 89) и уравнение свободно-молекулярного течения ( 88), обратимость которых без труда обнаруживается.  [c.547]

Кроме основных понятий и определений, относящихся к случайным процессам, будут изложены две основные теории исследований динамических систем корреляционная теория и стохастическая теория, связанная с теорией процессов Маркова и уравнениями Фоккера — Планка — Колмогорова. Корреляционная теория обычно используется при исследовании линейных систем с постоянными и переменными параметрами и нeлинeйньfx после предварительной их линеаризации (любым методом), а стохастическая теория весьма удобна для исследования нелинейных и параметрических (линейных и нелинейных) систем.  [c.5]

По поводу этого уравнения авторы работы делают следующее заключение ...Полученное нами уравнение является одномерным обобщенным уравнением Фоккера — Планка в случае переменных структурных чисел [Кв — структурные числа). Оно справедливо, если время корреляции Хкор много меньше постоянных времени системы и если не интересоваться интервалами времени порядка времени корреляции другими словами, если можно считать случайную функцию х 1) марковским случайным процессом. Вывод уравнения, приведенный здесь, интересен тем, что в нем не используется понятие процесса Маркова. Общепринятый аппарат процессов Маркова заменен аппаратом обобщенных корреляционных функций, позволяющим проводить исследования в общем случае, переходящем при определенных условиях в случай процессов Маркова... . Оценка  [c.35]

Функцию х(0 считаем случайной функцией времени, статистические характеристики которой заданы. Реальный процесс изменения параметра х(0 заменяем на эквивалентный б-корре-лированный и используем стохастические методы, связанные с составлением уравнения Фоккера—Планка—Колмогорова для определения функций плотности вероятности искомых величин.  [c.190]


Такой процесс разрушения когерентности позволяет сделать кардинальный шаг кинетика открытой квантовой системы не описывается уравнением Шрёдингера. Это утверждение следует понимать так волновой функции ф открытой системы следует приписать информационный смысл. Другими словами, в процессе ее эволюции со временем наряду с эволюционным развитием согласно уравнению Шрёдингера не следует исключать возможности процессов с уничтожением волновой функции в некоторых достаточно обширных областях пространства (на языке математики такой процесс выглядит как случайный "переброс" системы в "другое гильбертово пространство"). При таком подходе у волновой функции ф появляются черты, делающие ее похожей на вероятность. У вероятности существует два вида эволюции — регулярное ее изменение согласно дифференциальному уравнению Фоккера-Планка (или дискретной цепи Маркова) и скачок при реальном событии. Точно так же и у (/ -функции существует два возможных вида эволюции согласно уравнению Шрёдингера в отсутствие связи с внещним окружением и квантовый скачок при "измерении", т.е. при отклике на связь с внешним миром. Волновая функция как бы медленно "выжидает", совершая цепочку обратимых унитарных преобразований, чтобы потом "принять рещение" и осуществить коллапс. Такое "принятие рещения" очень похоже на выпадение того или иного числа на грани кубика. Можно сказать, что это "решение принимается"  [c.385]

З-и этап, < > 1/Г — вторая грубая шкала времени. В этой шкале случайное блуждание брауновской частицы приобретает характер диффузионного процесса, движение частицы как бы безынерционно, частица не имеет памяти (в механическом смысле) о своей скорости (распределение по скорости — всегда максвелловское). Каждое промежуточное состояние частицы в момент <о фиксируется только координатой ж(<о), которую можно посчитать за новое начальное положение Жо, из которого начнется тот же, что и раньше, процесс диффузии (временной аргумент сдвинется на <0, I = 1- о) без всякого воспоминания о его предыстории. Такие процессы называются марковскими. Эволюция системы описывается с помошью функции распределения р Ь, г), являюшейся решением уравнения Фоккера—Планка и определяющей окончательный этап релаксации на макроскопическом времени Гполн-Граничные и начальные условия для функции р 1, г) существенно определяют детали этого процесса.  [c.99]

Как мы видели в предыдущем параграфе, марковский случайный процесс может быть описан с помощью функций распределения ( ) и Рг, причем для условной вероятности Рг мы сформулировали процедуру ее расчета, например, с помощью уравнения Фоккера—Планка. Для функции щ)1( ) такой процедуры нет, поэтому вопрос о виде распределения >[(0 остается одним из основных в теории случайных процессов. В отличие от статистической механики равновесных систем у нас нет какого-то общего (или исходного) выражения для VI (в равновесной статистической механике таким распределением является распределение Шббса). Наиболее распространенный выбор функции То ( ) — это гауссово распределение. Для такого выбора, как мы убедились на материале гл. 1 и 2, имеются достаточно убедительные физические основания, но есть и чисто формальные обстоятельства, связанные с реализацией этого распределения. Рассмотрим этот вопрос на примере простейшего случая.  [c.145]

Фазовый портрет этих уравнений при = О изображен на рис. 3.1. К окружности Г, состоящей из состояний равновесий, асимптотически приближаются все остальные фазовые точки, за исключением точки неустойчивого равновесия О. Наличие малых случайных воздействий ( Ф 0) приводит к случайным блужданиям фазовой точки в окрестности Г, т. е. амплитуда колебаний А близка к двум, а фаза медлеппо меняется и может накапливать свои изменения. В установившемся состоянии плотность вероятностей р А, ф) не зависит от угла ф и изображается поверхностью вида, показанного на рис. 3.2. Таким образом, входное случайное воздействие преобразуется в осцилляторе Ван-дер-Поля в выходные флуктуации амплитуды колебаний и случайный дрейф фазы ф. Для отыскания соответствующей плотности вероятностей может быть составлено широко известное уравнение в частных производных Эйнштейна — Фоккера — Планка. С помощью этого уравнепия может быть найдено не только установившееся распределение вероятностей, т. е. уравнение изображенной на рис. 3.2 поверхности, но и процесс ее установления, а также плотности вероятностей перехода из одного состояния Л, ф в другое А, ф за р я т [216, 310, 320, 342]. Эта плотность вероятностей р А, ф А, ф т) при тимеет пределом установившуюся плотность вероятностей р А).  [c.59]

Исходными уравнениями теории являются модельные кинетические уравнения для унарной и бинарной функций распределения. В этих уравнениях наряду с динамическими членами межмолекулярного взаимодействия учтены члены, описывающие диссипативные процессы по схеме Фоккера — Планка. Согласно этой схеме движение мо.лекул жидкости рассматривается аналогично двр1н ению броуновских частиц, которые помимо регулярных действий окружающих молекул, испытывают действие случайных молекулярных сил вследствие флуктуаций.  [c.185]

Под диффузионным приближением понимают поведение динамических систем в рамках случайных воздействий, моделируемых белым (дельта-коррелированным) шумом с га- уссовской или пуассоновской статистикой. Оно широко используется и равносильно описанию осредненной динамики в рамках кинетических уравнений для вероятностных распределений типа Фоккера — Планка (при гауссовской статистике) или Колмогорова — Феллера (при пуассоновской статистике)., Хотя диффузионное приближение подробно рассмотрено в ряде известных руководств и статей (см., например, [1—4, 22, 49]),, но в связи с расширением применений кинетических уравнений в различных областях физики (в том числе и для описания реальных процессов, вообще говоря, не дельта-коррелированных) появляются все новые работы по выводу и анализу этих уравнений и условиям их применимости. Из новых подходов к вопросу можно, например, отметить функциональный, основанный на формулах типа Фуруцу — Новикова — Донскера (см. [23, 32]). Здесь мы покажем, что широкий класс динамических систем в диффузионном приближении очень просто описывается на основе аппарата формул дифференцирования.  [c.98]



Смотреть страницы где упоминается термин Случайные процессы. Уравнение Фоккера — Планка : [c.541]    [c.541]    [c.231]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.2  -> Случайные процессы. Уравнение Фоккера — Планка



ПОИСК



Планка

Процесс Уравнение

Случайность

Случайные процессы

Уравнение Фоккера—Планка



© 2025 Mash-xxl.info Реклама на сайте