Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные и вариационно-разностные методы

Все приведенные в предыдущих главах вариационные функционалы теорий упругости и оболочек являются эффективным средством качественного анализа вариационных и дифференциальных формулировок и служат теоретической основой для построения прямых вариационных и вариационно-разностных методов, получающих все большее развитие и применение благодаря возрастающим возможностям ЭЦВМ. В этой главе показаны некоторые возможности теоретического анализа сложных задач теорий упругости и оболочек и практического применения вариационных формулировок для построения алгоритмов решения этих задач и исследования их точности.  [c.142]


ВАРИАЦИОННЫЕ И ВАРИАЦИОННО-РАЗНОСТНЫЕ МЕТОДЫ  [c.247]

В конце сборника помещено дополнение. В нем обсуждаются некоторые не нашедшие отражения в основном тексте аспекты практического применения рассматриваемого метода граничных интегральных уравнений [на примере задач гидродинамики несжимаемых идеальной и вязкой (в приближении Стокса) жидкостей и теории упругости] и рассматриваются численные методы решения, близкие к применяемым в сборнике (в частности, вариационные и вариационно-разностные методы).  [c.7]

В вариационно-разностном методе интегрирование в (8.27) выполняют по приближенной формуле прямоугольников, заменяя кривые и" т V ступенчатыми линиями (рис. 8.26). Это преобразует функционал (8.27) в сумму  [c.248]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

При подготовке разделов, посвященных вариационным и разностным методам и динамическим задачам теории упругости, существенную помощь нам оказали И. Ф. Образцов и В. Б. Поручиков. Ряд ценных советов и замечаний по структуре книги и ее содержанию был сделан С. Г. Михлиным. Улучщению всего изложенного материала способствовала внимательная работа над рукописью, проведенная коллективом кафедры теории пластичности МГУ (зав. кафедрой Ю. Н. Работнов) и В. М. Александровым.  [c.10]

Вариационные и разностные методы в задачах теории упругости  [c.620]

ГЛ. vin. ВАРИАЦИОННЫЕ И РАЗНОСТНЫЕ МЕТОДЫ  [c.642]

ГЛ. vm. ВАРИАЦИОННЫЕ и РАЗНОСТНЫЕ МЕТОДЫ  [c.654]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]


Этот метод имеет те же принципиальные основы, что и вариационно-разностный метод, но более прост при реализации на ЭВМ. Для расчета область разбивается на конечное число элементов, обычно треугольников для плоской задачи, торов для осесимметричной задачи и многогранников для пространственной задачи.  [c.124]

Несложно заметить, что эта матрица не зависит от координат точки внутри элемента. Следовательно, деформации в элементе постоянны, так же как и в вариационно-разностном методе.  [c.125]

Рис. s.8. Сеточная разметка при расчете вариационно-разностным методом и распределение напряжений в свободной части резьбы Рис. s.8. Сеточная разметка при <a href="/info/382492">расчете вариационно-разностным методом</a> и <a href="/info/166564">распределение напряжений</a> в свободной части резьбы
Для расчета напряженного состояния рассмотрим плоскую модель соединения в декартовой системе координат. Основные размеры соединения и сеточная разметка хвостовика при решении задачи вариационно-разностным методом показаны на рис. 9.10, а. Сеточная разметка паза производилась аналогично.  [c.169]

При решении задач о номинальной и местной напряженности реакторов ВВЭР обычно приходится использовать комбинации указанных выше методов - сопротивления материалов, теории пластин и оболочек, аналитических и численных методов. Среди последних весьма эффективны вариационные методы - метод конечных элементов (см. 4 настоящей главы) и вариационно-разностный метод.  [c.55]

Рассмотрим решение двумерной задачи о сжатии двух цилиндров. Краевая задача на каждой итерации решалась вариационно-разностным методом. Зона возможного контакта не превышает 1/5 Л и при выбранной дискретизации содержит 21 узел. При решении предлагаемым методом рассмотрен диапазон нагрузок, при которых в контакте находится от 3 до 19 узлов. Для пробной площадки контакта на первой итерации принималось от 1 до 21 узла (с учетом симметрии от 1 до 11). Во всем диапазоне нагрузок и при любом начальном выборе площадки контакта для сходимости потребовалось не более четырех итераций. На рис. 4.11 для одного варианта нагрузки приведена итерационная последовательность количества опорных узлов п для всех вариантов начальной площадки. Например, при 5 = Гк число опорных узлов составило по итерациям 11—8—7—6. Применение операторов ортогонального проектирования в дискретной задаче ускоряет сходимость по сравнению с последовательным перебором возможных площадок контакта [20].  [c.146]

Вместе с тем имеются возможности для дальнейшего развития оболочечных расчетных схем. Целесообразно также использование других методов расчета с привлечением, в частности, разностных и вариационно-разностных методов, например метода конечных элементов в трехмерной постановке.  [c.56]

Для обеспечения прочности его основной детали — силового винта и, в частности, узла сопряжения головки винта с крышкой ротора и резьбовой частью были проведены исследования напряжений и деформаций на моделях из оптически чувствительного материала методами фотоупругости и тензометрирования, а также вариационно-разностным методом с применением ЭВМ.  [c.125]

Расчет напряжений и смещений в винте выполнен вариационно-разностным методом (ВРМ) в перемещениях на основе разностной схемы, изложенной в работе [9]. Выбор метода расчета был продиктован тем, что при одинаковых параметрах системы разрешающих конечно-разностных уравнений (число уравнений, ширина полосы ленточной матрицы) и одинаковом расположении узловых точек ВРМ может дать лучшую аппроксимацию уравнений теории упругости, чем метод конечных элементов (МКЭ).  [c.129]


Глава, посвященная вариационным и разностным методам (гл. VIII), также написана в иллюстративном ключе, на примерах решения конкретных задач. Это объясняется тем, что вариационные и особенно разностные методы решения систем уравнений с частными производными являются весьма обстоятельно разработанными разделами вычислительной математики (в частности, и в плане применения к задачам теории упругости), концентрированное изложение которых не представляется возможным в силу ограниченности объема предлагаемой книги. В то же время частные примеры решения с достаточной полнотой выявляют преимущества и недостатки этих методов.  [c.9]

Прямой вариационно-разностный метод. Сущность метода проследи5т иа примере осесимметричной задачи без температурных и дополнительных деформаций.  [c.121]

На рис. 8.18, а и б дана сеточная разметка головки болта и корпусной детали для вычисления функций влияния и напряженного состояния в головке болта вариационно-разностным методом, а также показано изменение главных напряжений на контуре головки и стержня болта (контурные напряжения). Контактные давления на этом рисунке соответствуют случаю опирания головки болта на жесткое основание. На практике этому варианту приблизительно соответствует случай стягивания стальных деталей болтами из титаиовых сплавов. На рис. 8.18, б дан график распределения контактных давлений на оиорном торце головки болта при опиранни на жесткую (недеформируемую) деталь (кривая 1) и деталь из одинакового с болтом материала (кривая 2).  [c.159]

Расчет вариационно-разностным методом произведен для т.рех-зубого сектора, закреиленного по внутреннему контуру (по контуру отверстия). Тонкие радиальные и окружные линии па рис. 10.7 иллюстрируют сеточную разметку части сектора, а цифры — напряжения в МПа в разных точках на поверхности зубьев.  [c.190]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]

К числу эффективных методов анализа напряженно-деформированных состояний в элементах реакторов относятся численные методы - метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ), метод граничных интегральных уравнений ( ГИУ), получившие значительное развитие в последнее десятилетие благодаря их повьпиенной универсальности и появлению ЭВМ с большими быстродействием и памятью. Конечноразностный метод получил применение при определении термоупругих напряжений в зонах патрубков реакторов водо-водяного типа [10, 12].  [c.35]

Большой порядок систем уравнений, вызванный подробной дискретизацией области, и большая ширина полосы ненулевых коэффициентов, вызванная разветвленным характером геометрии расчетной области, могут при ограниченной разрядности ЭВМ привести к накоплению недопустимой погрешности. Примером такой разветвленной конструкции является патрубок в сосуде, содержаший отвод внутрь сосуда (рте. 3.6, а). Для расчета вариационно-разностным методом, рассмотренным вьппе для задач концентрации напряжений, была построена сеточная область, показанная на рис. 3.6, б. Соответствующее число уравнений равно 2413, ширина полосы — 55. Расчет выполнялся на ЭВМ соответственно с 12- и 7-разрядными числами. Погрешюсть расчета контролировалась по величине возникающей в месте закрепления опорной реакции, а также путем проверки по результатам расчета условий равновесия в сечениях тонкостенных участков патрубка. Если в первом случае оцененная таким образом погрешность в величине напряжений не превьпыала 1-2%, то во втором случае все результаты расчета оказались далекими от правильных.  [c.56]

В последние годы использование ЭВМ дало эффективные средства [4, 5] для анализа напряженно-деформированных состояний роторов методами конечных элементов (МКЭ) или вариационно-разностными методами (ВРМ). Следует, однако, заметить, что использование для расчетов ВРМ и МКЭ позволяет определять напряженно-деформированное состояние в основном для осесимметричных конструкций непрерывной формы. Поэтому для зон разгрузочных окон, мест под соплодержатели, а также мест соединения деталей ротора необходимо использовать дополнительные экспериментальные и расчетные исследования локальных напряженных состояний.  [c.123]

Следовательно, сейчас уже имеется достаточно надежный аппарат для теоретического обоснования несовместных конечных элементов, использование которых до недавнего времени считалось некорректным. Доказательство сходимости МКЭ в несовместном случае не использует традиционные приемы вариационно-разностных методов и является новой математической задачей. Таким образом, если МКЭ в совместном случае можно классифицировать как модификацию метода Ритца, то обоснованное применение несовместных конечных элементов позволяет классифицировать МКЭ как самостоятельный метод не только с точки зрения процедурной реализации, но и с точки зрения теоретического обоснования.  [c.13]



Смотреть страницы где упоминается термин Вариационные и вариационно-разностные методы : [c.622]    [c.624]    [c.626]    [c.630]    [c.632]    [c.634]    [c.636]    [c.644]    [c.646]    [c.648]    [c.650]    [c.652]    [c.656]    [c.658]    [c.660]    [c.97]    [c.153]    [c.72]    [c.72]    [c.29]    [c.371]   
Смотреть главы в:

Численные методы в теории упругости и пластичности  -> Вариационные и вариационно-разностные методы



ПОИСК



Вариационно-разностные схемы. Метод конечных элементов (МКЭ)

Вариационно-разностный итерационный метод

Вариационно-разностный метод построения разностных схем

Вариационные и разностные методы в задачах теории упругости

Метод вариационно-разностный

Метод вариационно-разностный

Метод вариационно-разностный расчета

Метод вариационно-разностный расчета конструкций

Метод вариационно-разностный расчета конструкций динамических жесткостей 416418, 423 — Определение собственных

Метод вариационно-разностный расчета конструкций конечных элементов расчета конструкций 521—525 — Примеры расчета

Метод вариационно-разностный расчета конструкций частот системы

Метод вариационный

Особенности вариационно-разностного метода

Понятие о вариационно-разностном методе

Примеры построения алгоритмов расчета пологих анизотропных оболочек вариационно-разностным методом

Разностный метод

Ряд вариационный

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте