Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационно-разностный итерационный метод

ВАРИАЦИОННО-РАЗНОСТНЫЙ ИТЕРАЦИОННЫЙ МЕТОД  [c.203]

Известно, что для тел сложной формы и со сложным характером нагружения наиболее целесообразной является итерационная схема решения контактных задач, предусматривающая использование одного из численных методов, например вариационно-разностного, или метода конечных элементов. В данном случае связь между нагрузками и перемещениями на каждом шаге итерации находилась при помощи метода конечных элементов, который позволил при расчете учесть особенности геометрии диска, наличие сил трения в зоне контакта пальцев с диском, возможную геометрическую нелинейность, связанную с большими перемещениями, и некоторые другие особенности. При решении задачи использовались четырехугольные изопараметрические элементы, позволившие сравнительно просто осуществить автоматизированную подготовку исходной информации и несколько уменьшить ширину ленты глобальной матрицы жесткости, что весьма существенно в условиях дефицита оперативной памяти вычислительной машины. Не останавливаясь на подробностях способа нахождения связи между нагрузками и перемещениями, который в принципе уже описан ранее, изложим непосредственно метод нахождения контактных напряжений на контурах отверстий упругого диска.  [c.76]


Рассмотрим решение двумерной задачи о сжатии двух цилиндров. Краевая задача на каждой итерации решалась вариационно-разностным методом. Зона возможного контакта не превышает 1/5 Л и при выбранной дискретизации содержит 21 узел. При решении предлагаемым методом рассмотрен диапазон нагрузок, при которых в контакте находится от 3 до 19 узлов. Для пробной площадки контакта на первой итерации принималось от 1 до 21 узла (с учетом симметрии от 1 до 11). Во всем диапазоне нагрузок и при любом начальном выборе площадки контакта для сходимости потребовалось не более четырех итераций. На рис. 4.11 для одного варианта нагрузки приведена итерационная последовательность количества опорных узлов п для всех вариантов начальной площадки. Например, при 5 = Гк число опорных узлов составило по итерациям 11—8—7—6. Применение операторов ортогонального проектирования в дискретной задаче ускоряет сходимость по сравнению с последовательным перебором возможных площадок контакта [20].  [c.146]

Оба метода при использовании вариационного принципа и соответ-ствуюш,их разностных схем могут быть сведены к одним и тем же уравнениям [9] и одинаково пригодны для решения задач подобного типа. С точки зрения практической реализации на ЭВМ МКЭ целесообразно использовать для задач с контуром сложного очертания, для которых необходима сильно нерегулярная структура сетки получающуюся при этом систему линейных алгебраических уравнений практически можно решать только одним из прямых методов. Метод конечных разностей для подобных задач требует сгущения сетки, однако структура уравнений в этом методе упрощается, и даже частичное использование регулярной сетки позволяет сильно уменьшить количество различных коэффициентов уравнений систему уравнений при этом можно решать как прямым, так и итерационным методом.  [c.103]

Осесимметричное нагружение дисков рассмотрим как наиболее типичное при оценке статической прочности. В качестве расчетного метода использован метод конечных элементов (МКЭ). Это не единственный возможный метод расчета известно применение и других методов дискретизации пространственной задачи к расчету дисков (метод конечных разностей, вариационно-разностный [2, 43, 100]). МКЭ наиболее широко применяют в прикладных задачах 47]. Можно отметить простоту формулировок основных принципов, ясность физической интерпретации, свободу размещения узловых точек, симметрию матриц жесткости элементов и системы уравнений, облегчающую контроль расчетов. При выборе в качестве неизвестных узловых перемещений матрица разрешающей системы будет симметричной, положительно определенной (при исключении перемещения диска как жесткого целого) и иметь ленточную структуру. Это способствует быстрому решению системы разрешающих уравнений прямыми или итерационными методами. Методу конечных элементов посвящено большое число работ [3, 46, 53, 114, 119]. Приведенные в гл, 4 результаты получены ДЛЯ простейшего кольцевого элемента треугольного сечения, однако основные соображения, использованные в решении, имеют достаточно общий характер и применимы как для плоской задачи, так и при более сложных элементах в осесимметричном случае.  [c.153]


Операторный способ тесно связан с реализацией на ЭВМ ме-. тода конечных разностей и вариационно-разностного метода. Суть его заключается в наличии набора типовых операторов (например, 13-членный оператор конечно-разностного аналога бигар-монического дифференциального уравнения для изгибаемой пластины), с которым связаны номера составляемых уравнений. Возможность быстрого составления уравнения с любым номером, что особенно важно при использовании различных итерационных методов, является большим преимуществом. Однако при различного рода нерегулярностях число нетиповых операторов быстро возрастает, что зачастую становится непреодолимым препятствием для применения операторного способа.  [c.99]

Системы вариационно-разностных уравнений хорошо приспособлены для решения итерационными методами. Это становится очевидным, если учесть, что большинство итерационных методов можно трактовать как различные методы спуска из выпуклого программирования (см., например, [5.14]). При этом становятся ясными вопросы их сходимости. Важное достоинство итерационных методов в том, что они являются самоисправляющимися, т. е. не только не накапливают, но и исправляют ошибки округления.  [c.180]

Для решения задачи на 1/8 ячейки воспользуемся вариационно-разностным методом, описанным в 8 гл. 5. Оперативная память г ЭВМ БЭСМ-6 позволила произвести разбие-ния 1/8 ячейки на 8X8X16 узлов. Оценка точности численного решения регулировалась условием (5.8.15). Для достижения этой точности в зависимости от параметра x= 2/ i и коэффициентов Пуассона VI, V2 уходило от 5 до 15 мин машинного времени (сходимость итерационного процесса ухудшалась с ростом х и стремлением коэффициентов Пуассона к 1/2).  [c.215]

Дается краткое оригинальное изложение основ механики деформируемого твердого тела (МДТТ). Рассматриваются современные эффективные численные методы решения линейных и нелинейных краевых задач МДТТ. Описаны разностные и вариационные методы, методы Монте-Карло и конечных элементов. Значительное внимание уделяется итерационным методам и способам улучшения их сходимости, а также методам решения краевых задач МДТТ со свойствами, зависяш,ими от температуры и времени.  [c.2]


Смотреть страницы где упоминается термин Вариационно-разностный итерационный метод : [c.9]   
Смотреть главы в:

Расчёт резинотехнических изделий  -> Вариационно-разностный итерационный метод



ПОИСК



Вариационные и вариационно-разностные методы

Метод вариационно-разностный

Метод вариационный

Методы итерационные

Разностный метод

Ряд вариационный

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте