Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерии начального разрушения

Критерии начального разрушения. Если потеря несущей способности конструкции из композита связывается с начальными стадиями процесса разрушения конструкционного материала или разрушение конструкции рассматривается как развивающийся во времени процесс, то возникает необходимость п учете состояний отдельных структурных элементов, а на микроуровне — исходных элементов композиции. Группу критериев, задающих условия достижения соответствующих предельных состояний композита, будем называть критериями начального разрушения.  [c.76]


Для композитов с пластической матрицей начало разрушения обычно связывают с моментом возникновения в связующем развитых пластических деформаций. Следовательно, в качестве критерия начального разрущения для таких материалов может быть выбрано одно из условий пластичности (текучести [75]), при этом  [c.76]

Необходимо также отметить, что в настоящее время стало ясным, что сопротивление отрыву как характеристика сопротивления хрупкому разрушению, выраженная в виде напряжения, не является постоянной характеристикой данного материала, все попытки определить эту константу не привели к положительным результатам. Сопротивление отрыву предусматривает одновременный отрыв по всему сечению образца. Хрупкое разрушение и в эксплуатации и даже в лабораторных испытаниях идет от точки к точке из какого-то начального очага. Поэтому характеристикой хрупкого разрушения не может быть одно напряжение, оно должно включать и напряжение, и длину трещины. Применяемый в настоящее время критерий хрупкого разрушения Ки = УТ-(раздел 19) является более постоянной величиной для данного материала, чем сопротивление отрыву.  [c.208]

Поскольку предельно-равновесное состояние соответствует стартовому (начальному) моменту распространения трещины, оно характеризует только локальное разрушение тела. Математические условия, которые описывают наступление предельно-равновесного состояния, называются критериями локального разрушения.  [c.13]

При длительной работе элементов конструкций под переменными напряжениями с большим числом циклов (исчисляемым миллионами) предельные состояния определяются в основном теми изменениями состояния металла, которые постепенно в нем накапливаются в результате циклического деформирования (процесс усталости). Напряженное состояние в этом случае обычно рассматривают как упругое и неизменное во времени, хотя в состав деформаций входит некоторая доля пластических, особенно на начальных стадиях процесса. Предельное состояние характеризуется теми усилиями и пропорциональными им местными напряжениями в зонах концентрации, которые вызывают зарождение усталостной трещины (в пределах.в основном упругих деформаций) после определенного числа циклов. Условия возникновения трещин определяются критериями усталостного разрушения, отражающими как циклические свойства металла, так и особенности распределения напряжений в зонах концентрации.  [c.6]


В восьмой главе описываются слоистые композитные круговые усеченные конические оболочки. В линейной и геометрически нелинейной постановках и с использованием структурного критерия прочности рассмотрена краевая задача осесимметричного изгиба и начального разрушения ортотропной слоистой ар-  [c.14]

От указанных недостатков свободен структурный подход к установлению критериев прочности композитных материалов. Это направление в механике композитных материалов, представленное работами [50, 124, 146, 168, 172, 181, 192, 195, 199, 241, 255, 267, 278, 281, 310, 343 и др.], базируется на изучении истинных напряжений элементов субструктуры, для каждого из которых принимается тот или иной критерий прочности. Истинные напряжения восстанавливаются после определения средних (по объему представительного элемента) характеристик напряженно-деформированного состояния при помощи уравнений используемой структурной модели композитного материала. Таким путем удается вычислить разрушающие интенсивности внешних нагрузок всех элементов композита и наименьшую из них естественно принять в качестве нагрузки его начального разрушения. Этот подход позволяет выявить эффективность работы связующего и армирующих элементов, указать рациональные по прочности параметры армирования и открывает пути к управлению прочностными свойствами композитных материалов. В то же время необходимо отметить оценочный характер получаемых при этом результатов, поскольку их установление базируется на анализе локальных характеристик напряженно-деформированного состояния компонентов композита, определяемых лишь приближенно. Точность определения этих характеристик из средних по представительному объему величин ограничена, с одной стороны, точностью уравнений используемой структурной модели армированного слоя, само установление которых неизбежно связано с пренебрежением рядом локальных эффектов, и с другой — наличием неучитываемых технологических дефектов — неполной адгезии, отклонений в регулярности сети волокон и т.д., также неизбежно возникающих в процессе изготовления реального композитного материала и играющих роль концентраторов напряжений.  [c.36]

Адгезионная прочность связующего не ниже когезионной. Это допущение принимается только для определенности. При наличии достоверных данных о прочности адгезионных связей композита в формулировку критерия его начального разрушения легко ввести соответствующие условия.  [c.36]

При построении квазистатической траектории трещины поэтапным путем используют локальные критерии хрупкого разрушения, определяющие начальное направление распространения трещины.  [c.44]

Таким образом, вводя критерий необратимого разрушения жидкости, можно рассчитать кумулятивную выемку в модели М, А. Лаврентьева и уточнить начальные условия, необходимые для расчета  [c.61]

Дифференциальные методы основаны на определении у вершимы трещины угла между начальным и последующим направлениями роста трещины. Считается, что каждое малое приращение нагрузки сопровождается малым приращением длины трещины, и при помощи локального критерия разрушения рассчитывается угол, определяющий линию, вдоль которой трещина увеличивает свою длину. Нагрузка, при которой трещина получает приращение длины (критическая нагрузка), также находится из критерия разрушения. Шаг трещины (приращение ее длины) должен находиться из дополнительного условия, в то время как известные локальные критерии, как правило, определяют только критическую нагрузку и угол распространения трещины.  [c.192]

Материал, использованный в экспериментальных исследованиях, результаты которых приведены на рис. 6.2, имел удельный вес 2 г/см . При скорости и — 6,3 м/с, статическом модуле упругости 1000 кгс/мм и напряжении 0 = = 0,2 кгс/мм напряжение о равно 3,245 кгс/мм . Это значение не совпадает с результатами экспериментальных исследований, что, по-видимому, можно объяснить таким образом. В рассматриваемом случае динамический модуль упругости выше статического, и диаграмма напряжение — деформация носит линейный характер до момента разрушения материала. Однако в процессе развития разрушения с начального момента разрушения до момента полного разрушения характер разрушения усложняется, что требует рассмотрения уравнения состояния, учитывающего вязкоупругость. Следует также иметь в виду, что и критерии разрушения необходимо согласовывать с действительностью и учитывать многообразие форм разрушения.  [c.157]


Ответственным за разрушение материала (вторая фаза) является ударный сдвиг, возникающий за счет различия начальных массовых скоростей в объеме образца /50/. В качестве критерия разрушения используется энергетический критерий, выраженный через критическую скорость /45,51,52/  [c.86]

Испытание труб (диаметром до 144 мм) ва загиб иа 90 — по ГОСТ 3728—78. Критерием служит уменьшение диаметра в любом мосте изгиба па величину пе более 15% от начального без разрушения металла трубы.  [c.104]

Сопоставление сопротивления усталости сварных соединений монолитного и многослойного металла осуществлялось на образцах (рис. 2) со стыковым швом, выполненным ручной сваркой (сталь марки Ст. 3 сп). При испытании образцов учитывались основные факторы, определяющие сопротивление усталости сварных соединений реальных конструкций. Так, концентрация напряжений, создаваемая формой соединения, соответствовала реальным конструкциям. Образцы имели сечение достаточное для того, чтобы остаточные напряжения в них достигали максимальных значений. Образцы испытывались при осевом нагружении по описанной выше методике. Усталостные трещины в монолитных образцах зарождались на поверхности пластин — по линии сплавления шва с основным металлом. Очаги зарождения усталостных трещин в многослойных образцах чаще всего располагались между слоями тонколистового металла в зонах стыковых швов. Критерием разрушения монолитных образцов при испытаниях служила начальная стадия развития усталостных трещин, соответствующая глубине 4 мм.  [c.259]

Критерии прочности временное сопротивление (предел прочности) Ов, МПа, — отношение наибольшей нагрузки, предшествующей разрушению образца, к его начальной площади поперечного сечения предел текучести (физический) От, МПа, — отношение наименьшей нагрузки, при которой образец деформируется без заметного ее увеличении, к его начальной площади поперечного сечения условный предел текучести оо,2 (оо.з и др.), МПа,— отношение нагрузки, при которой остаточное удлинение составляет 0,2 % (0,3 % и др.) длины расчетного участка образца, к его начальной площади поперечного сечения F .  [c.278]

Первое основное положение заключается в том, что сопротивление термической усталости в обш,ем случае должно оцениваться как минимум по двум критериям а) по долговечности, т. е. по числу теплосмен до разрушения или появления начальной треш,ины обусловленного малого размера б) по сопротивлению распространения термоусталостной трещины или иначе по коэффициенту интенсивности роста трещин К LL/dN.  [c.137]

Следовательно, критерий разрушения не учитывает влияние пластической деформации в энергетике процесса, а также второго слагаемого в выражении для вычисления работы деформации А = оДу + Доу. Очевидно, в связи с этим критерий Гриффитса дает завышенные значения разрушающих напряжений. Расчет напряжений, необходимых для появления в металле начальной трещины размером в несколько межатомных расстояний, дает очень большие значения, близкие к теоретической прочности (см. табл. 2.1). Именно поэтому при анализе работоспособности критериев разрушения и были высказаны предположения о том, что трещины в металле присутствуют всегда, а экспериментальные исследования были направлены на обнаружение этих трещин.  [c.74]

Мы разработали новую теорию устойчивости пластической деформации металлов, основанную на классических представлениях об устойчивости систем, сформулировали критерии устойчивости, которые имеют достаточно простое математическое выражение. Эти критерии позволяют определить момент перехода металла к новому механизму деформации, например, к ротационной пластичности, предсказать момент разрушения металла, располагая информацией о начальной стадии кривой а(е).  [c.265]

Возникающие в местах концентрации напряжений трещины, как правило, распространяются под действием циклических эксплуатационных нагрузок в пластически деформированных зонах. В зависимости от конструктивных форм и абсолютных размеров сечений, температуры, скорости и характера нагружения, механических свойств, уровня начальной дефектности и остаточной напряженности в конструкциях могут возникать хрупкие состояния, характеризуемые весьма низкими (до 0,1 сгт) разрушающими напряжениями. Условия образования и развития хрупких трещин при этом оказываются связанными со стадией развития трещин циклического нагружения. В вершине трещин длительного статического, циклического и хрупкого разрушения в зависимости от номинальной напряженности и размеров трещин возникают местные упругопластические деформации соответствующего уровня. Таким образом, оценка несущей способности и обоснование надежности элементов машин и конструкций должны осуществляться на основе анализа кинетики местных упругих и упругопластических деформаций, статистики эксплуатационной нагруженности, энергетических и силовых деформационных критериев разрушения.  [c.78]

Предполагая аналогию процессов разрушения и плавления и взяв в качестве характеристики плавления, инвариантной относительно условий процесса, энтропию плавления, условие разрушения запишем в виде (1.64), т. е. критерием разрушения (вязкого) в точке является достижение к моменту t плотностью полной энергии 5 (t ) некоторого постоянного значения 5, являющегося характеристикой материала. При этом скорость изменения плотности полной энтропии может быть представлена в виде суммы плотности внешнего потока энтропии и внутреннего источника возрастания энтропии т], определяемого в виде (1.65), и тогда условие разрушения может быть представлено в виде (1.66), где А5 — критическое приращение плотности полной энтропии по отношению к начальному состоянию 5 (0).  [c.21]


Если материал трубы разрушается без существенных пластических деформаций, то приведенной информации о напряженном и температурном состояниях стенок в сочетании с заданным временем эксплуатации конструкции достаточно, чтобы провести анализ ее работоспособности с помощью соответствующих критериев (см. 3.4). Но для достаточно пластичного материала его разрушению предшествует заметная по величине деформация, которая изменяет начальные значения R я h так, что напряженное состояние стенки не остается постоянным. Более того, при определенных режимах эксплуатации (например, при движении по трубе теплоносителя с заданным расходом) изменение геометрических размеров трубы может повлиять на условия теплообмена и вызвать изменение температурного состояния стенки.  [c.205]

Наиболее распространенным критерием стойкости к коррозионному растрескиванию является минимальная начальная величина К — коэффициента интенсивности напряжения в вершине трещины, приводящая в данных условиях к началу стабильного роста трещины с последующим разрушением, который для случая плоского деформированного состояния при испытаниях 34  [c.34]

Для хрупких композитов использование критериев начального разрушения имеет целью определение момента начала дисперсного разрушения материала, т. е. интенсивного образования субмикротрещин и микротрещин в компонентах по всему объему композита, которое приводит к потере сплошности связующего, разру-щению адгезионного контакта между матрицей и арматурой, а в случае волокнистых композитов — к дроблению самих волокон. Критерии начального разрушения, описывающие условия возникновения дефектов структуры композита указанных типов, предложены в работах А. М. Скудры и Ф. Я. Булавса [127, 128 и др.].  [c.76]

Это общее описание поверхностей прочности предложено в [100] и широко развито в работах [48, 61, 98, 103, 213, 218, 238, 246, 251, 260] в квадратичной форме и форме высших порядков [14, 212]. Компоненты тензоров / , / т, /артвед,. .. из (4.1), ха-рактериззтющие прочность, определяются из серии экспериментов для каждого конкретного анизотропного материала. При любых последующих изменениях структуры армирования или механических характеристик элементов композиции соответствующую серию экспериментов необходимо проводить заново. Таким образом, при феноменологической формулировке критерия прочности каждый тип анизотропии требует выполнения определенной экспериментальной программы. Поэтому использование подобных критериев прочности не позволяет прогнозировать композитный материал такой структуры, при которой обеспечивалась бы либо максимальная нагрузка начального разрушения, либо максимальная несущая способность конструкции. Кроме того, при феноменологическом подходе невозможно определить и характер разрушения конструкции из композитного материала.  [c.24]

При исследовании сварных соединений необходимо ориентироваться на испытание образцов, в которых воспроизведены условия сварки и эксплуатации конструкций. Необходимо также учитывать особенности дефектов сварки, которые имеют остроту концентратов, существенно отличную от остроты трещины. Например, радиус в вершине непро-вара или несплавления может изменяться от 0,001 до 2 мм. Этот онцентратор может работать как трещина и в то же время иметь значительные отличия от нее с увеличением радиуса в вершине. Поэтому формс1льный подход при оценке трещиностойкости сварных конструкций может привести к серьезным ошибкам. В связи с этим представляется весьма важным моментом прежде всего определение влияния начального радиуса концентратора на ei о критическое раскрытие 6 . Для этой цели воспользуемся результатами работы /27/, где для оценки сопротивляемости сварных соединений квазихрупким разрушениям был предложен критерий — критический коэффициент интенсивности деформаций, учитьгаающий изменение механических свойств метал га в зоне концентратора в процессе термопластического цикла сварки и величину радиуса в его вершине. При этом  [c.82]

В рамках феноменологического подхода общим для различных моделей развития трещин в твердых телах является то, что в начальный момент считается заданным некоторое конечное возмущение в виде начальных трещин, что хорошо согласуется с экспериментальными данными о наличии несовершенств структуры материала, какой бы предварительной технологической обработке он ни подвергался. Отсюда при выводе различных критериев прочности с учетом процесса разрушения получают соотношения, совпадающие по форме с обычными критериями нроч-jto TH только входящие теперь в эти соотношения постоянные зависят от координат, длин п геометрии начальных трещин.  [c.6]

До 40-х годов нашего века развитие идей в этом направлении было незначительным. Это в основном связано с тем, что в традиционной схеме процесс распространения трещин оставался в стороне. Кроме того, существовавшее мнение о том, что разрушение наступает почти мгновенно, сразу указывало на ограниченность возможных построений таких критериев прочности, где константы зависят от размера начальных трещин, имеющихся в теле. В последующие десятилетия эта точка зрения была пере-, смотрена. Было установлено, что развитие трещины занимает значительный период, предшествующий полному разрушению, пр ичем это относится не только к усталостному и пластическому, но даже и к хрупкому разрушению. Так, например, для еили-катных стекол, для которых процесс разрушения считался практически мгновенным, скорость развития трещины в начале процесса в 10—100 млн. раз меньше, чем на заключительном этапе. В то же время экспериментальные факты свидетельствуют о том [53], что в правильно (по сопротивлению разрушению) спроекти-  [c.15]

Наиболее важные результаты былн получены в области исследования со- противления однократному статическому н динамическому разрушению с учетом начальных макродефектов на базе линейной и нелинейной механики разрушения. Это в первую очередь относится к разработке теории и критериев хрупкого и квазихруикого разрушений упругих и упругопластических тел с трещинами. К числу силовых, энергетических и деформационных критериев относятся критические значения коэффициентов интенсивности напряжений Ки и Кс, пределов трещиностойкости энергии разрушения Gi , G , Уь J , раскрытия трещин или бе, а также критические деформации в вершине трещин е . Для определения указанных характеристик известны многочисленные методики испытаний — на статическое растяжение плоских и цилиндрических образцов с трещинами, на статический изгиб и внецентренное растяжение плоских образцов, на внутреннее давление сосудов, на растяжение центробежными силами при разгонных испытаниях дисков.  [c.21]

Конкретными критериями живучести, характеризуемыми числовыми значениями, являются регламентированные повреждения, требуемые длительности роста усталостных трещин от начальных до регламентированных размеров, начальные размеры производственных дефектов, начальные размеры надежно обнаруживаемых трещин при различных ввдах контроля, остаточная прочность. Эти критерии применительно к конструкциям летательных аппаратов разработаны на основе обобщения и анализа повреждений конструкций различных типов самолетов за многолетний период эксплуатации. Такой подход к установлению критериев живучести представляется наиболее эффективным, так как разрушение силовых элементов конструкций в эксплуатации происходит не только из-за усталостных повреждений, которые определяются путем расчетов и лабораторных исйьгганий конструкций, но и вследствие производственных, случайных, коррозионных повреждений, которые не поддаются расчетам и не воспроизводятся при лабораторных испытаниях конструкций. Кроме того, вследствие недостаточной имитации  [c.419]


ВОЗМОЖНО путем проведения испытаний с изменением размеров образцов. Образцы с постоянным отношением начальной длины надреза к ширине образца II lalWa, но е различной шириной Wo ( ри постоянной толш,ине) называют подобными образцами. Такие образцы в настоящее время широко применяются в частности в Японии, для исследования механических критериев разрушения.  [c.170]

Очевидно, что = Е (То) Вц представляет собой начальное напряжение в стержне. При хрупком характере разрушения материала стержня, когда (5.1) остается справедливым вплоть до разрушения, в условии работоспособности а [ < [а (Т) ] допустимое напряжение [а (Т) ] связано с временным сопротивлением материала либо на растяжение р (Г), если а >0, либо на сжатие Tj,, с Т), если <7 с 0. В последнем случае предполагается, что потери устойчивости стержня и его выпучивания под действием сжимающих напряжений не происходит. В принципе даже при упругой работе материала стержня его разрушение может быть связано с процессо1и длительного накопления повреждений. Тогда при заданном времени tj действия температуры Т значение [а (Т) ] будет связано с пределом длительной прочности материала, соответствующим значениям Т и tj. При циклическом изменении температуры стержня при упругой работе его материала для оценки работоспособности потребуется привлечение критериев многоцикловой усталости (см. 3. 4 и [50]).  [c.192]

Отсюда при выводе различных критериев прочности с учетом процесса разрушения можно получить соотношения, совпадающие по форме с обычными критериями прочности, только входящие туда константы становятся зависящими от расцо.доженпя, конфигурации и размеров начальных трещин.  [c.71]


Смотреть страницы где упоминается термин Критерии начального разрушения : [c.73]    [c.556]    [c.36]    [c.141]    [c.4]    [c.151]    [c.9]    [c.61]    [c.25]    [c.179]    [c.172]    [c.105]    [c.129]    [c.210]   
Смотреть главы в:

Устойчивость и оптимизация оболочек из композитов  -> Критерии начального разрушения



ПОИСК



Критерий разрушения



© 2025 Mash-xxl.info Реклама на сайте