Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение материалов с ЭПФ в технике

Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой  [c.245]


После этого раздела следуют гл. 8—11, относящиеся к классической теории упругости. После некоторых колебаний автор решил все же включить сюда раздел, относящийся к теории конечных деформаций, область применения этой теории слишком ограничена и имеющиеся решения крайне немногочисленны. Подобранный материал в основном соответствует университетской программе. Преподаватель всегда сможет выбрать отсюда те разделы, которые покажутся ему более интересными. В практике преподавания теории упругости на механико-математическом факультете МГУ автор отказался от изложения теории изгиба Сен-Венана, считая, что вопрос о распределении касательных напряжений при изгибе ие очень важен. Однако появление композитных материалов с полимерной матрицей, которые слабо сопротивляются сдвигу, заставило ввести опять теорию касательных напряжений при изгибе для балок прямоугольного сечения — что нужно для практики. Вообще, применение в технике композитных материалов заставило включить в курс элементы теории упругости анизотропных тел.  [c.13]

Первыми в механике макротрещин явились работы Гриффитса ), в которых делается попытка объяснить аномально низкую прочность в случае хрупкого разрушения материала при растяжении развитием при определенных условиях трещин, имевшихся в нем еще до приложения нагрузки. Позднее, примерно, с пятидесятых годов, интерес к этому подходу возрос. Появились работы как за рубежом, так и у нас, в которых первоначальные идеи получили дальнейшее развитие. Известные результаты в практическом отношении пока скромны, однако они уже сейчас. находят применение в технике. В настоящем параграфе кратко излагаются некоторые элементы теории трещин.  [c.574]

Фторопласт. Это сравнительно новый и перспективный материал, получаемый методом полимеризации. Наиболее широкое применение в технике нашел фторопласт-4. Он представляет собой рыхлый порошок, превращающийся при холодном прессовании в плотные таблетки. При нагревании фторопласт-4 не плавится, а только размягчается. Если спрессованные таблетки нагревать до 633—653 К, то они спекаются в плотную белую массу, а при температуре выше 673 К — разлагаются.  [c.53]

В возрастающем общем объеме машиностроительной продукции все большее место занимают изделия, изготовленные из специальных материалов, которые, как правило, трудно поддаются обработке традиционными методами. Эти методы, требующие громоздкого и энергоемкого оборудования, оказываются неэффективными еще и потому, что в общей стоимости изделия именно стоимость материала составляет основную долю, т. е. целесообразно применять способы обработки с наиболее экономичным использованием дорогостоящих материалов. В этих целях инженеры и конструкторы разрабатывают ловые технологические процессы, основывающиеся на последних достижениях науки. В первую очередь речь идет о технологическом применении лазерной техники. Сфокусированный луч лазера создает локализованное Б малой области сверхвысокое давление и температуру, достаточную не только для плавления обрабатываемого материала но и для его испарения. Существенное преимущество лазерной технологии — относительная простота управления траекторией и интенсивностью луча, его доставки в нужное место с помощью системы зеркал.  [c.11]


Полиамиды— материалы бесцветного или желтовато-коричневого цвета характеризуются небольшой плотностью, высокими ударной вязкостью, прочностью на растяжение, на сжатие и изгиб, способностью к поглощению вибраций, твердостью, износостойкостью, незначительным коэффициентом трения. Сочетание высоких физико-механических свойств способствовало их широкому применению в технике в качестве конструкционного и антифрикционного материалов. В отличие от других пластиков полиамиды обладают способностью изменять эксплуатационные свойства в зависимости от структуры материала перерабатываются в изделия методом литья под давлением, экструзией, центробежным литьем, в некоторых случаях — свободным литьем.  [c.262]

Следует отметить, что интенсивное изучение критериев надежности материалов началось с момента широкого применения в технике высокопрочных металлических материалов, характерной особенностью которых является склонность к хрупкому разрушению. Надежность работы конструкции во многом определяется сопротивлением материала распространению треш,ины, т. е. его вязкостью разрушения К с- Конструктивную прочность сплавов нередко оценивают с помощью так называемых диаграмм конструктивной прочности (рис. 166), построенных в координатах Кгс — 00,2- Повысить сопротивление хрупкому разрушению при сохранении высокой статической прочности можно измельчением зерна, ТМО,  [c.315]

Несмотря на некоторые недостатки армированных пластмасс (такие, как изменения в материале в зависимости от количества циклов, низкие разрушающие напряжения и отсюда низкие прочностные свойства при пульсирующем растяжении, способность расслаиваться и чувствительность к направлению действия нагрузки), превосходные другие свойства обеспечивают пластмассам широкое применение в технике. На усталостную прочность пластмасс слабо влияют концентрация местных напряжений и коррозионные эффекты (см. разд. 6.16) и в этом смысле. армированные пластмассы прочнее алюминиевых сплавов при равном весе. Армированные пластмассы — новый материал, обладающий многими скрытыми потенциальными возможностями, которые еще предстоит исследовать и развить.  [c.109]

Еще одной областью применения плазменной техники является получение расплавов различных веществ из порошкообразного исходного сырья. Для этого используются плазменные реакторы центробежного типа. При стабилизации плазменной струи вращающейся стенкой горизонтально расположенного реактора (рис. 4.6.12, а) плазменная струя генерируется плазмотроном со стержневым катодом, а реактор выполнен в виде тигля из огнеупорного материала, который вращается электродвигателем. Устройства такого типа работают в основном в дискретном режиме, т.е. реактор загружается материалом, который при вращении печи расплавляется, после чего печь наклоняется и жидкий продукт выпускается в соответствующую емкость.  [c.453]

Приведенный материал свидетельствует о том, что намечается совершенно определенная тенденция в развитии и широком применении импульсной техники в практике коррозионных исследований.  [c.24]

Пластические массы (пластмассы, пластики) —получающие за последние годы все более широкое применение в технике и быту материалы, которые характеризуются способностью под влиянием внешнего давления приобретать определенную форму, соответствующую очертаниям пресс- формы, в которую помещается материал при прессовании.  [c.122]

Электротехнический фарфор широко распространен как керамический материал для изоляторов в высоковольтной технике, технике связи, применяется в низкочастотных цепях радиоэлектронной аппаратуры, но здесь почти вытеснен другими керамическими материалами. Фарфор наиболее древний по применению материал. Основное преимущество его перед другими видами керамики заключается в высокой пластичности, допускающей все виды изготовления изделий, и невысокой температуре обжига (1280—1320° С). Шихта его имеет следующий типовой состав белая глина (каолин) — 25%, пластичная глина — 15%, полевой шпат — 40%, кварцевый песок— 17%, череп фарфоровый — 3%. Таким образом, это смесь трех основных компонентов глины, кварца, полевого шпата (40 40 20 весовых частей, которые могут изменяться в зависимости от требований к свойствам).  [c.211]


Расчет частей машины и сооружений на прочность требует знания соотношений между компонентами тензора напряжений, при которых начинается разрушение материала или, по меньшей мере, в нем возникают пластические деформации (наступает текучесть). Эти соотношения приводятся в различных гипотезах прочности , основанных на тех или иных допущениях об основном факторе, определяющем начало разрушения или появления текучести [65, 59]. При этом материалы, находящие себе применение в технике, делят, как правило, на класс хрупких и класс пластических материалов. Первые нередко удовлетворительно упруги при деформировании вплоть до разрушения и часто обладают разными временными сопротивлениями при простом растяжении и при простом сжатии Вторые, напротив, имеют, как правило, одинаковые временные сопротивления при испытании на растяжение и на сжатие. Вместе с тем, такие материалы перестают подчиняться закону Гука уже задолго до разрушения, обнаруживая свойство текучести, т. е. большого деформирования без заметного увеличения усилий, действующих на материал. Напряжение, соответствующее появлению текучести, называемое в дальнейшем пределом текучести, оказывается для большинства материалов одним и тем же при испытании как на растяжение, так и на сжатие. Было построено несколько гипотез прочности хрупких тел. Наиболее удовлетворительной из них, по-видимому, является гипотеза Мора, предложенная им в 1894 г. Что же касается гипотез прочности пластических тел, то здесь следует упомянуть три гипотезы, которыми пользуются в практических расчетах.  [c.50]

Медь находит широкое применение в технике и для электротехнических целей используется как проводниковый материал, занимающий по электропроводности второе место после серебра. Медь обладает высокой тепло-  [c.12]

Разрабатывались способы восстановления в пламенной струе ряда тугоплавких металлов из кислородных соединений, преимущественно окислов — окислы и карбиды вольфрама, молибдена, ниобия, тантала. Установлено, что поведение веществ, вводимых в струю газовой плазмы, определяется температурой газа и градиентом по сечению и оси струи, скоростью истечения струи, условиями тепло- и массообмена в ней, родом и свойствами, составом, физикохимическими свойствами обрабатываемого материала, размером и формой частиц, их концентрацией и распределением в струе, временем пребывания в зоне высоких температур и т. д. Анализ влияния большинства факторов практически невозможен без применения методов математического моделирования, без теплофизических расчетов, которые ввиду их сложности требуют применения машинной техники. Иллюстраций 7.  [c.483]

Применение в технике смазочного материала того или иного вида обусловлено условиями работы конкретного узла трения. Так,  [c.379]

Затраты на материалы S , используемые в технологическом процессе, определяются исходя из количества расходуемого материала (по данным оперативного учета или утвержденных норм расхода) и оптовых цен с учетом транспортных и заготовительно-складских расходов по прейскурантам. Если удельный расход материалов при оценке сравниваемых вариантов остается неизменным, их стоимость в расчетах экономической эффективности во внимание не принимается. В состав бригады (звена) рабочих при выполнении механизированных работ с применением строительной техники входят рабочие (машинисты), управляющие машиной, и рабочие, непосредственно участвующие в технологическом процессе.  [c.467]

Сварка полиизобутилена. Полиизобутилен получил наиболее широкое применение в технике как обкладочный материал для защиты аппаратуры от воздействия агрессивных сред.  [c.52]

Понятие химической чистоты материалов, а также способы ее выражения различны и зависят от области применения материала. В нашей стране для чистых веществ, использующихся в химической и металлургической практике, в зависимости от степени очистки установлены следующие классификации чистый (марка Ч, содержание примесей от 2 10 до 1.0%), чистый для анализа (марка ЧДА, содержание примесей от 1 10 до 0Л%), химически чистый (марка ХЧ, содержание примесей от 5 10 до 0.5%) и особо чистый (марка ОЧ, содержание примесей 0.05%о). Особо чистые вещества для полупроводниковой техники разделяют на классы А, В и С. В класс А входят вещества, чистоту которых по содержанию основного компонента можно надежно охарактеризовать современными аналитическими методами. Классы чистоты В и С характеризуют чистоту по содержанию определяемых примесей. В последнем случае о содержании основного компонента можно говорить только условно, понимая под этим разницу между 100%о и суммарным содержанием определяемых примесей.  [c.191]

Эта книга может служить руководством при изучении основных принципов термодинамики с элементарным приложением их в нескольких областях техники. Так как законы термодинамики основаны на прямом экспериментальном наблюдении суммарных свойств, они являются по своей природе эмпирическими. Несмотря на то что применения, основанные на этих законах, могут быть сформулированы в конкретных количественных математических выражениях, термодинамические величины, такие как температура, давление, энергия и энтропия, не могут быть интерпретированы физически без ссылки на принятые теории по строению материи.  [c.26]

Книга состоит из двух основных разделов. В гл. 1—6 изложены основные законы и их интерпретация с соответствующими вычислениями и применениями к чистому компоненту или системам с постоянным составом. Эти главы включают основной материал, который используется во всех областях техники. В гл. 7—10 рассмотрены переменные составы и применение основных законов к фазам и системам с химическим равновесием. Для того чтобы сохранить изложение на должном уровне, основной материал ограничен в объеме и многие частные применения умышленно опущены.  [c.27]

С I января 1963 г. в СССР введен в действие принятый в 1961 г. ГОСТ 9. 867—61 Международная система единиц (СИ), который устанавливает предпочтительное применение этой системы в науке, технике и всех областях народного хозяйства СССР. В СИ вместо термина вес, когда он характеризует количество вещества (например, расход материала на изготовление продукции), применяется термин масса. Единицей массы является килограмм, (кг). Если же термин вес характеризует силу, возникающую под действием земного притяжения на данное пело, то в СИ применяется термин сила тяжести. Единицей силы является ньютон (и) 1 кГ = 9,80665 н, или приближенно 1 кГ = 9,81 н.  [c.16]


Медь нашла применение в конструкциях только в виде листового материала, так как вследствие невысоких литейных свойств она дает плохое литье. Для изготовления деталей путем отливки обычно применяются медные сплавы, главным образом бронзы и латуни. Первые нашли наибольшее распространение в антикоррозионной технике.  [c.249]

Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

Твердость — это свойство материала оказывать сопротивление контактной деформации или хрупкому разрушению при внедрении индентора в его поверхность. Испытания на твердость — самый доступный и распространенный вид механических испытаний. Наибольшее применение в технике получили статические методы испытания на твердость при вдавливании индентора метод Бринелля, метод Виккерса и метод Роквелла.  [c.37]

Заслуживает внимания и применение в технике записи ТВ-сиг-нала со звуковым сопровождением с помощью ПАВ-рекордера. В качестве рекордера используется трехгранная пирамидальная игла из ппобата лития с плош,адью вершины 10 мкм и системой (зстречно-штыревых преобразователей) на гранях пирамиды. Достигаемая плотность мощности ПАВ на конце иглы 12 кВт/см . Запись осуществляется сочетанием трех механизмов разогревом конца иглы высокой концентрацией энергии ПАВ с последующей передачей ее в термопластическую среду для записи наряду с механическими деформациями материала колеблющейся иглой. У иглы из ниобата лития, возбуждаемой па частоте 7,2 МГц, смещение конца достигает 100 нм, что обеспечивает запись видеосигнала и квадрофонического звукового сопровождения. Успешно опробована и дюралевая игла с напыленными ПАВ-преобразователями из оксида цинка.  [c.151]

ГО света и теплофизических характеристик используемого материала. Положение существенно изменяется при переходе к другому классу задач управления пучками когерентного оптического излучения—его применению в технике связи, в первую очередь — в воле. Разработка ВОЛС уже перешла на уровень осуществлен-ности экспериментальных систем многосоткилометровой протяженности с весьма широкой полосой частот. В обычных системах связи ширина полосы лежит в пределах 10% от несущ,ей, что составляет 10 Гц н заведомо превышает полосу частот, которая может потребоваться в ближайшем, а возможно, и в сравнительно отдаленном будущ,ем. Тем не менее уже сейчас в системах микроволнового диапазона реализуются полосы частот в несколько гигагерц, а при освоении ВОЛС вероятно использование полос шириной в десятки гигагерц.  [c.217]

На данном этапе разработки техники тепловых труб, вероятно, еще слишком рано говорить о том, что имеется единый подход к теории, расчету и изготовлению тепловых труб, поэтому рядом исследователей были предприняты попытки найти наиболее при--емлемый метод. В задачу настоящей работы не входило отдавать предпочтение тем или иным исследованиям или опровергать их. Естественно, противоречивые места были преднамеренно обойдены. С этой же целью для большей ясности некоторые аспекты теории тепловой трубы были изложены менее строго, чем это было возможно. Однако при этом была проявлена необходимая осторожность, позволившая обеспечить, чтобы ни один из фундаментальных принципов при таком подходе не был упущен. Книга содержит большое число тщательно подобранных примеров, которые тесно связаны с текстом и составляют его неотъемлемую часть. Многие примеры даже выходят за рамки излагаемого предмета и обеспечивают возможность практического применения материала, изложенного в книге. Эти примеры детально проработаны, в них использована как Британская система единиц, так и СИ  [c.8]

За последние годы алюминий находит применение в технике и промышленности не только как конструкцио -ный материал. Он все шире используется как металл покрытия для придания поверхностям различных материалов ряда ценных физико-химических свойств.  [c.4]

Пластические массы (пластмассы, пластики) — материалы, получившие очень широкое применение в технике и быту и характеризующиеся способностью под влиянием внешнего давления приобретать определенную форму, соответствующую очертаниям прессформы, используемой для прессования изделий из данного материала. Изготовив один раз прессформу требующихся размеров и конфигурации, мы можем отпрессовать в ней большое количество изделий, точно повторяющих очертания внутренней полости прессформы.  [c.197]

При составлении текстовых материалов НТД необходимо использовать современные методы применения диктофонной техники, пишущих и наборно-пишущих автоматов, фотонаборного оборудования. Графический и табличный материал необходимо подготавливать также современными методами, например, плоскостное проектирование (аппликации, темплеры, чертежи, заготовки).  [c.144]

Свойства кипящей стали можно улучшить при одновременном увеличении выхода годного применением вакуумной техники при разливке и затвердевании стали. Макроструктура слитков, отлитых из вакуумированных сталей, приближается к макроструктуре спокойных сталей, а усадочная раковина и пузыри в головной части слитка полностью отсутствуют 134]. Вакуумирование снижает количество неметаллических включений в стали на 90%, уменьшает разброс зонной сегрегации Р, 5 и N и их абсолютное содерлоние, благодаря чему улучшаются пластические свойства материала [34, 35].  [c.43]

В качестве иллюстраций, показывающих возможности того или иного метода, приведены результаты работ, выполненных в лаборатории специального материаловедения Новочеркасского политехнического института в течение ряда лет. Многие из этих работ внедрены в различные отрасли промышленности и дают большой технико-экономический эффект. Так, самосмазывающиеся материалы типов ПМ, маслянит, ЛГС и др., непрерывно образующие на поверхности трения в процессе работы тонкие антифрикционные пленки, способствующие повышению износостойкости пары трения, нашли широкое применение в технике. Материал ПМ применяется в судостроении для спуска судов на воду с наклонных стапелей. Материалы типа маслянит широко применяются в машиностроении для изготовления самосмазывающихся подшипников скольжения, шестерен, в приборостроении, в гидротехнике. Износостойкие антифрикционные покрытия на металлической основе, разработанные в лаборатории, также широко применяются в различных областях в микрокриогенной технике, в химическом машиностроении, при обработке металлов резанием для повышения стойкости режущего инструмента и во многих других отраслях промышленности. Покрытия, наносимые в вакууме, нашли применение в приборостроении и некоторых специальных областях техники.  [c.145]

Медные сплавы находят большое применение в технике, хотя и 1меньшее, чем сталь. Сплавы меди применяются как антифрикцион ный материал, например, свинцо вистая и оловяннстая бронза конструкционный — латуни, алю миниевая и бериллиевая бронза антикоррозионный — морская бронза, а также для электротехнических целей — кадмиевая  [c.248]


В качестве материала для деталей трубопроводной арматуры пластмассы имеют наибольшее применение в технике, особенно в химическом машиностроении. Детали трубопроводной арматуры изготовляют из термореактивных и термопластичных материалов. Выбор материала для деталей трубопроводной арматуры обусловливается предъявляемыми к ним требованиями и условиями их сборки и эксплуатации. Трубы из реактопластов (фаолита, гетинакса, текстолита, стеклотекстолита и др.), изготовленные на основе фенолформ-альдегидных, полиэфирных и эпоксидных смол, не изгибаются по месту, не свариваются, а лишь склеиваются. Трубы из полиэтилена, полипропилена, винипласта и из других термопластов имеют меньшую прочность, чем трубы из реактопластов, но легко обрабатываются, изгибаются по месту, свариваются и склеиваются.  [c.52]

К сплавам более узкого назначения относя гея сплав , серии DTD и L для авиаци-< Пной промышленности сюда входят и высокопрочные сплавы, А1—Zn—Mg, Свариваемые сплавы, А1 —Zn—Mg средней прочности ахсдят все более широкое применение в технике, t в ближайшее время можно ожидать появление британской спецификации на ути матер алы.  [c.74]

Кремний 1 — является одним из самых распространенных в природе элементов, составляя около 26% земной коры. Входит в состав многих минералов встречается также в виде свободной двуокиси кремния, главным образом в виде обычного песка. Свободный кремний встречается в виде двух модификаций кристаллической и аморфной.. При высоких температурах кремний реагирует с азотом и углеродом. Он хорошо растворяется во многих расплавленных мгталлах, в ряде случаев образуя с ними (с Mg, Са, Си, Ре, Р1, В1 и др.) соединения, называемые силицидами. Кремний нерастворим в кислотах, но хорошо растворяется в щелочах. Карбид кремния 51С (карборунд) по твердости приближается к алмазу применяется в качестве абразива при шлифовании металлов и других твердых материалов. Сплавы кремния с металлами (в том числе подшипниковые) находят широкое применение в технике (кремнистые стали, пружинные, кислотоупорные, динамная, трансформаторная и др.). Обычно кремний получают в виде сплава с железом (ферросилиций). Силиконы — кремний-органические соединения—используются в качестве изоляционного материала, смазок и т. д. Для повышения жаростойкости металлов в пределах 800—850° С применяется насыщение поверхности металла кремнием (силицирование). Карбид кремния 81С добавляется в карбюризаторы для жидкостной цементации сталей.  [c.6]

Применение в технике. Ртуть, так же как вольфрам, молибден, никель и стекло, является основным материалом вакуумной техники. Кроме того, она особенно важна как вспомогательный материал для получения и измрре-аия ваиуума. Развитие вакуумной техники до ее современного уровня было бы невозможно без ртути, В настоящее время она несколько утратила свое монопольное положение в связи с получением масел с низким давлением паров, таких, как апьезоновое или силиконовое масло.  [c.428]

Нп/см — порядка 0,1 или меньше. Если бы а было большим, например а=1 Нп/см, то это означало бы, что амплитуда звукового давления уменьшается на 8,7 дБ при прохождении 1 см пути. Пройдя всего только 3 см, волна испытала бы затухание 3 Нп, или 26 дБ. Ее амплитуда составила бы только 5% первоначального значения и волна содержала бы лишь 0,25% первоначальной энергии. Следовательно, безразлично, имел ли поглотитель толщину 3 см или бесконечную. Даже если бы физически было возможно создать поглощающий материал с таким большим коэффициентом затухания, как 1Нп/см, то он необязательно яашел бы применение в технике подводного звука. Хороший поглотитель должен обладать двумя основными качествами. Во-первых, звук должен проникнуть в материал, а не отразиться. Во-вторых, после того как звук вошел в поглотитель, он должен полностью поглотиться. Если поглотитель обладает большим поглощением, при котором лишь ничтожное количество звука., отраженного от его задней границы, возвращается к пе- редней,то х кажется бесконечным и Тогда коэффициент  [c.345]

Полиформальдегид — новая пластическая масса, осваивае-.мая производством. Полиформальдегид представляет собой полимер с линейной структурой, состоящей из разветвленных цепей большой длины. Это строение полиформальдегида обусловливает высокую степень кристалличности полимера и его высокие прочностные показатели, в частности сопротивление изгибу. Сочетание в полиформальдегиде эластичности и высокой химической стойкости определяет широкие возможности применения этого материала в антикоррозионной технике. Имеются указания, что изменение температуры в широком интервале, от —40 до 4-120 С, практически не влияет на ударную прочность полиформальдегида.  [c.435]


Смотреть страницы где упоминается термин Применение материалов с ЭПФ в технике : [c.5]    [c.110]    [c.402]    [c.659]    [c.69]    [c.932]    [c.422]    [c.305]    [c.216]    [c.450]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Применение материалов с ЭПФ в технике



ПОИСК



Метод ускоренной разработки технологических ведомостей, предназначенных для сводного нормирования материалов на изделие с применением средств вычислительной техники

Применение в технике

Применение композиционных материалов в технике

Смазочные материалы и их применение в технике

Техника безопасности при применении огне, взрывоопасных и вред ных веществ и химических материалов



© 2025 Mash-xxl.info Реклама на сайте